
Managing Latency in Embedded Streaming Applications
under Hard-Real-Time Scheduling

Mohamed A. Bamakhrama
mohamed@liacs.nl

Todor Stefanov
stefanov@liacs.nl

Leiden Institute of Advanced Computer Science
Leiden University, Leiden, The Netherlands

ABSTRACT
In this paper, we consider the problem of hard-real-time
scheduling of embedded streaming applications, modeled us-
ing dataflow graphs, while minimizing the application la-
tency. Recently, it has been shown that the actors in an
acyclic Cyclo-Static Dataflow (CSDF) graph can be sched-
uled as a set of implicit-deadline periodic tasks. Such sche-
duling approach has been shown to yield the maximum achi-
evable throughput for a large set of graphs, called matched
I/O rates graphs. We show that scheduling the graph actors
as implicit-deadline periodic tasks increases the latency sig-
nificantly for a class of graphs called unbalanced graphs. To
alleviate this problem, we propose a new task-set represent-
ation for the actors in which the actors are scheduled as a set
of constrained-deadline periodic tasks. We prove that sche-
duling the actors as constrained-deadline periodic tasks de-
livers optimal throughput (i.e., rate) and latency for graphs

with repetition vector equal to ~1. Furthermore, we evalu-
ate the constrained-deadline representation using a set of 19
real-life applications and show that it is capable of achieving
the minimum achievable latency for more than 70% of the
applications, and even if the application has a repetition vec-
tor not equal to ~1. We show that choosing the task deadline
involves a trade-off between the latency and the resources
requirements. Finally, we propose a decision tree to assist
the designer in choosing the appropriate real-time periodic
task model for scheduling acyclic CSDF graphs.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
[Real-time and embedded systems]; D.4.7 [Operating Sys-
tems]: Organization and Design—Real-time systems and
embedded systems

General Terms
Algorithms, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’12, October 7–12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1426-8/12/09 ...$15.00.

Keywords
Real-time multiprocessor scheduling, streaming applications

1. INTRODUCTION
Embedded streaming systems have grown in complexity to

the point that many of them require hard-real-time (HRT)
execution of applications on multiprocessor platforms [11].
Additionally, some of these systems require support for dy-
namic (i.e., run-time) addition/removal of applications. To
cope with such requirements, the system must use fast re-
source management and scheduling solutions which provide
guaranteed services. To this end, algorithms from the hard-
real-time multiprocessor scheduling theory represent an at-
tractive solution approach. These algorithms provide many
nice properties such as timing guarantees for each applica-
tion, temporal isolation, and fast admission control of new
incoming applications.

Recently, it has been shown that acyclic CSDF graphs
with periodic input streams can be scheduled as asynchr-
onous sets of implicit-deadline periodic tasks [3]. An imp-
licit deadline periodic (IDP) task τi is defined by a 3-tuple
τi = (Si, Ci, Ti). The interpretation is as follows: τi is in-
voked (i.e., released) at time instants t = Si+kTi and it has
to execute for Ci time-units before time t = Si+(k+1)Ti for
all k ∈ N0, where Si is the start time of τi and Ti is the task
period. Such scheduling approach is called strictly periodic
scheduling (SPS). In [3], the authors considered the impact
of strictly periodic scheduling (SPS) on the throughput and
processor requirements of the applications. They showed
that scheduling the graph actors as implicit-deadline peri-
odic tasks yields the maximum achievable throughput (i.e.,
rate) for a large set of graphs, called matched I/O rates
graphs. One advantage of using the IDP model is the low
complexity of the schedulability test. However, the authors
of [3] did not investigate the latency of the applications when
scheduled using the IDP model. Generally speaking, latency
is defined as the elapsed time between the arrival of a sam-
ple to an application and the output of the processed sample
by the application. For many embedded streaming applica-
tions, latency is the primary performance metric rather than
throughput.

In this paper, we show that the IDP model increases the
latency significantly for a class of graphs called unbalanced
graphs. A balanced graph is the one where the product of
actor execution time and repetition is the same for all actors
(see Definition 6 in Section 4.1). In contrast, an unbalanced
graph is the one where such product differs between actors.

83

v1(1) v2(1) v3(1)
e1 e2

[1] [1] [1] [1]

(a) G1 (Balanced Graph)

v1(1) v2(9) v3(1)
e1 e2

[1] [1] [1] [1]

(b) G2 (Unbalanced Graph)

Figure 1: Example of balanced and unbalanced
graphs

Table 1: Throughput and latency metrics for G1 and
G2 under different scheduling schemes

STS IDP CDP
R L M R L M R L M

G1 1/1 3 3 1/1 3 3 1/1 3 3
G2 1/9 11 2 1/9 27 2 1/9 11 2

To illustrate the impact of the IDP model on the latency, we
present the following motivational example.

1.1 Motivational Example
In Figure 1, we show two graphs: G1 and G2. A schedule

consists of an infinitely repeated finite sequence of actor fir-
ings. A repetition vector represents the number of actor
firings in such finite sequence. Both graphs in Figure 1 have
a repetition vector equal to ~1. The execution time of each
actor is shown next to its name between round brackets (e.g.,
9 for v2 in G2). G1 (Figure 1(a)) is an example of a balanced
graph since the product of actor execution time and repeti-
tion is the same for all actors – 1 in this case. On the other
hand, G2 (Figure 1(b)) is an example of unbalanced graphs.

Let R, L, and M denote the throughput (i.e., rate), la-
tency, and minimum processor requirements of a graph G,
respectively. It has been shown that the maximum achiev-
able throughput and minimum achievable latency of a data-
flow graph are the ones achieved under self-timed scheduling
(STS) [9,17]. Thus, the maximum throughput and minimum
latency for both graphs is the one shown under the STS col-
umn in Table 1. The throughput and latency resulting from
scheduling the actors of both graphs as IDP tasks is shown
under the IDP column in Table 1. We see that the IDP model
yields the maximum throughput for both graphs, however, it
pays a high price in terms of increased latency for the unbal-
anced graph (up to 2.5x for G2). Instead, if the actors are to
be scheduled as constrained-deadline periodic (CDP) tasks,
then it is possible to achieve the optimal throughput and
latency (i.e., maximum throughput and minimum latency)
as shown under the CDP column in Table 1. In terms of
resource usage, we see that the CDP model achieves optimal
throughput and latency for G2 using the same number of
processors needed by IDP and STS – 2 processors. Thus, in
this example, the CDP model is equally good to the STS in
terms of throughput, latency, and resources usage.

1.2 Problem Statement
Given an application modeled as an acyclic CSDF graph:

1. derive its latency when its actors are scheduled as
implicit-deadline periodic tasks, and

2. derive a task-set representation for the actors, based

on the constrained-deadline model, that minimizes the
latency compared to the implicit-deadline model.

1.3 Paper Contributions
We identify two classes of CSDF graphs called balanced

and unbalanced graphs. For balanced graphs, we show that
the latency of the graph when its actors are scheduled as IDP
tasks is equal to the minimum achievable latency. For un-
balanced graphs, we devise a task-set representation based
on the constrained-deadline model to reduce the latency.
We prove that the proposed CDP representation achieves
optimal throughput and latency for graphs with repetition
vector equal to ~1. Furthermore, we evaluate the proposed
CDP representation using a set of 19 real-life applications
and show that it is capable of achieving the minimum achi-
evable latency for 70% of the applications, and even if the
application has a repetition vector not equal to ~1. Finally,
we propose a decision tree to assist the designer in choosing
the appropriate real-time periodic task model for scheduling
acyclic CSDF graphs.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of the related work. Section 3 intro-
duces the background material needed for understanding the
contributions of this paper. Section 4 presents the proposed
task-set representation. Section 5 presents the evaluation
of the proposed task-set representation. Finally, Section 6
ends the paper with conclusions.

2. RELATED WORK
In [17], it is shown that the minimum achievable latency of

a Homogeneous Synchronous Dataflow (HSDF, [12]) graph
is the one achieved under self-timed scheduling. This min-
imum latency is equal to the sum of execution times along
the critical path in the graph. In [9], Ghamarian et al. ex-
tended this result to general Synchronous Dataflow (SDF,
[12]) graphs and provided an algorithm to determine the
minimum achievable latency. In contrast, our work analyzes
the latency of CSDF graphs under strictly periodic schedul-
ing considering different models of periodic tasks, i.e., IDP
and CDP. Moreover, our analysis considers CSDF graphs
which are more expressive model than SDF/HSDF.

In [10], Goddard studied applying real-time scheduling
to dataflow programs modeled using the processing graphs
method (PGM). He used a task model called rate-based
execution (RBE) in which a real-time task τi is character-
ized by a 4-tuple τi = (xi, yi, di, ci). The interpretation is
as follows: τi executes xi times in time period yi with a
relative deadline di per job release and ci execution time
per job release. Goddard analyzed the latency of PGM
graphs scheduled using the RBE model and identified two
sources of latency: 1) inherit latency which is the latency
due to different production and consumption rates in the
PGM graph assuming zero execution time for the actors,
and 2) imposed latency which is the latency when non-zero
execution times are imposed on the actors. In contrast,
our approach uses CSDF graphs which are more expressive
model than PGM graphs in that PGM supports only a con-
stant production/consumption rate on edges (same as SDF),
whereas CSDF supports varying (but predefined) produc-
tion/consumption rates. As a result, the analysis technique
in [10] is not applicable to CSDF graphs.

In [14], Moreira and Bekooij analyzed the latency of SDF
graphs under self-timed scheduling and provided bounds on

84

the maximum latency for applications with periodic, spo-
radic, and bursty sources, together with a technique to check
latency requirements. In [15], they proposed algorithms to
find combined Time-Division-Multiplexing (TDM)/static or-
der schedules that guarantee a requested minimum throug-
hput and maximum latency, while minimizing the usage of
processing resources. Our approach differs from [14, 15] in:
1) we consider the periodic task models which allow apply-
ing a variety of proven hard-real-time scheduling algorithms
for multiprocessors, and 2) we use the CSDF model which
is more expressive than SDF graphs.

3. BACKGROUND
In this section, we provide an overview of the considered

dataflow and real-time models. This overview is necessary
for understanding the contributions in Section 4.

3.1 Cyclo-Static Dataflow (CSDF)
In [6], the CSDF model is defined as a directed graph

G = 〈V,E〉, where V is a set of actors and E ⊆ V × V
is a set of communication channels. Actors represent func-
tions that transform incoming data streams into outgoing
data streams. The communication channels carry streams of
data, and an atomic data object is called a token. A channel
eu ∈ E is a first-in, first-out (FIFO) queue with unbounded
capacity defined by a tuple eu = (vi, vj). The tuple means
that eu is directed from vi (called source) to vj (called des-
tination). The number of actors in a graph G is denoted by
N = |V |. An actor receiving an input stream of the applica-
tion is called input actor, and an actor producing an output
stream of the application is called output actor. A path
wa;z between actors va and vz is an ordered sequence of
channels defined as wa;z = {(va, vb), (vb, vc), · · · , (vy, vz)}.
A path wi;j is called output path if vi is an input actor and
vj is an output actor. W denotes the set of all output paths
in G. In this work, we consider only acyclic CSDF graphs.
An acyclic graph G has a number of levels, denoted by L,
which is given by Algorithm 1. An actor vi that belongs
to set Aj in Algorithm 1 has a level index σi = j. Each
actor vi ∈ V is associated with two sets of channels and two
sets of actors. The sets of channels are the input channels
set, denoted by inp(vi), which consists of all the input chan-
nels to vi, and the output channels set, denoted by out(vi),
which consists of all the output channels from vi. The sets
of actors are the successors set, denoted by succ(vi), and the
predecessors set, denoted by prec(vi). They are given by:

succ(vi) = {vj ∈ V : ∃eu = (vi, vj) ∈ E} (1)

prec(vi) = {vj ∈ V : ∃eu = (vj , vi) ∈ E} (2)

Algorithm 1 Levels(G)

Require: Acyclic CSDF graph G = 〈V,E〉
1: i← 1
2: while V 6= ∅ do
3: Ai ← {vj ∈ V : prec(vj) = ∅}
4: Zi ← {eu ∈ E : ∃vk ∈ Ai that is the source of eu}
5: V ← V \Ai
6: E ← E \ Zi
7: i← i+ 1
8: end while
9: L ← i− 1

10: return L disjoint sets A1, A2, ..., AL, where
⋃L
i=1 Ai = V

Every actor vj ∈ V has an execution sequence [fj(1),
fj(2), · · · , fj(Pj)] of length Pj . The interpretation of this
sequence is: The nth time that actor vj is fired, it executes
the code of function fj(((n − 1) mod Pj) + 1). Similarly,
production and consumption of tokens are also sequences
of length Pj in CSDF. The token production of actor vj
on channel eu is represented as a sequence of constant in-
tegers [xuj (1), xuj (2), · · · , xuj (Pj)]. The nth time that actor
vj is fired, it produces xuj (((n − 1) mod Pj) + 1) tokens on
channel eu. The consumption of actor vk is completely anal-
ogous; the token consumption of actor vk from a channel
eu is represented as a sequence [yuk (1), yuk (2), · · · , yuk (Pj)].
The firing rule of a CSDF actor vk is evaluated as “true”
for its nth firing iff all its input channels contain at least
yuk (((n−1) mod Pj)+1) tokens. The total number of tokens
produced by actor vj on channel eu during the first n invo-
cations, denoted by Xu

j (n), is given by Xu
j (n) =

∑n
l=1 x

u
j (l).

Similarly, the total number of tokens consumed by actor vk
from channel eu during the first n invocations, denoted by
Y uk (n), is given by Y uk (n) =

∑n
l=1 y

u
k (l)

An important property of the CSDF model is its decidabil-
ity, which is the ability to derive at compile-time a schedule
for the actors. This is formulated in the following definitions
and results from [6].

Definition 1. Given a connected CSDF graph G, a valid
static schedule for G is a finite sequence of actors invoca-
tions that can be repeated infinitely on the incoming sam-
ple stream while the amount of data in the buffers remains
bounded. A vector ~q = [q1, q2, · · · , qN]T , where qj > 0, is
a repetition vector of G if each qj represents the number
of invocations of an actor vj in a valid static schedule for
G. The repetition vector of G in which all the elements are
relatively prime1 is called the basic repetition vector of G,
denoted by ~̇q. G is consistent if there exists a repetition
vector. If a deadlock-free schedule can be found, G is said
to be live. Both consistency and liveness are required for
the existence of a valid static schedule.

Theorem 1 (From [6]). In a CSDF graph G, a repe-
tition vector ~q = [q1, q2, · · · , qN]T is given by

~q = P · ~r, with Pjk =

{
Pj if j = k

0 otherwise
(3)

where ~r = [r1, r2, · · · , rN]T is a positive integer solution of
the balance equation

Γ · ~r = ~0 (4)

and where the topology matrix Γ ∈ Z|E|×|V | is defined by

Γuj =


Xu
j (Pj) if actor vj produces on ch. eu

−Y uj (Pj) if actor vj consumes from ch. eu

0 Otherwise.

(5)

Definition 2. For a consistent and live CSDF graph G,
an actor iteration is the invocation of an actor vi ∈ V for qi
times, and a graph iteration is the invocation of every actor
vi ∈ V for qi times, where qi ∈ ~q.

Example 1. Figure 2 shows an example of a CSDF graph.
The graph has a number of levels L = 3. It also has three

1i.e., gcd{q1, q2, · · · , qN} = 1.

85

output paths given byW= {w1 = {(v1, v2) , (v2, v4)} , w2 =
{(v1, v3) , (v3, v4)},w3 = {(v1, v4)}}. The repetition vector

is ~̇q = [3, 2, 1, 3]T .

v1

v2

v3

v4

e1

e2

e3

e4

e5

[1, 1, 0]

[0, 0, 1]

[1, 1, 1]

[1] [1]

[1] [1]

[1, 1, 0]

[0, 0, 1]

[1, 1, 1]

Figure 2: Example of a CSDF graph

3.2 System Model and Scheduling Algorithms
In this section, we introduce the system model and the

related schedulability results.

3.2.1 System Model
A system Π consists of a set π = {π1, π2, · · · , πm} of m

homogeneous processors. The processors execute a task set
τ = {τ1, τ2, · · · , τn} of n periodic tasks, and a task may be
preempted at any time. A periodic task τi ∈ τ is defined
by a 4-tuple τi = (Si, Ci, Ti, Di), where Si ≥ 0 is the start
time of τi, Ci > 0 is the worst-case execution time of τi,
Ti ≥ Ci is the task period, and Di, where Ci ≤ Di ≤ Ti,
is the relative deadline of τi. A periodic task τi is invoked
(i.e., released) at time instants t = Si + kTi for all k ∈
N0. Upon invocation, τi executes for Ci time-units. The
relative deadline Di is interpreted as follows: τi has to finish
executing its kth invocation before time t = Si + kTi + Di
for all k ∈ N0. If Di = Ti, then τi is said to have implicit-
deadline. If Di < Ti, then τi is said to have constrained-
deadline. If all the tasks in a task-set τ have the same start
time, then τ is said to be synchronous. Otherwise, τ is said
to be asynchronous.

The utilization of a task τi is Ui = Ci/Ti. For a task
set τ , the total utilization of τ is Usum =

∑
τi∈τ Ui and

the maximum utilization factor of τ is Umax = maxτi∈τ Ui.
Similarly, the density of a task τi is δi = Ci/min(Di, Ti),
the total density of τ is δsum =

∑
τi∈τ δi, and the maximum

density of τ is δmax = maxτi∈τ δi. Note that the density is
equivalent to the utilization for implicit-deadline tasks.

Given a system Π and a task set τ , a valid schedule is
one that allocates a processor to a task τi ∈ τ for exactly
Ci time-units in the interval [Si + kTi, Si + kTi +Di) for all
k ∈ N0 with the restriction that a task may not execute on
more than one processor at the same time.

Based on whether a task can migrate between processors
upon preemption, scheduling algorithms are classified into:

• Partitioned : Each task is allocated to a processor and
no migration is permitted

• Global : Migration is permitted for all tasks
• Hybrid : Hybrid algorithms mix partitioned and global

approaches and they can be further classified to:

1. Semi-partitioned: Most tasks are allocated to pro-
cessors and few tasks are allowed to migrate

2. Clustered: Processors are grouped into clusters
and the tasks that are allocated to one cluster are
scheduled by a global scheduler

Since we will use both of the implicit and constrained
deadline periodic task models, we present below the schedu-
lability analysis results for both models on multiprocessor
systems.

3.2.2 Schedulability Analysis
A necessary and sufficient (i.e., exact) condition for an

asynchronous set of implicit-deadline periodic tasks τ to be
scheduled on m processors to meet all the deadlines (i.e., τ
is feasible) is:

Usum ≤ m (6)

A scheduling algorithm A is said to be optimal iff it can
schedule any feasible task set τ on Π. Several global and hy-
brid algorithms were proven optimal for scheduling asynchr-
onous sets of implicit-deadline periodic tasks [7]. In contrast,
partitioned scheduling is known to be non-optimal.

For constrained-deadline periodic tasks, we need first to
introduce some concepts that are essential for its schedula-
bility analysis.

Definition 3. The processor demand of a task τi over the
time interval [t1, t2], denoted by dbf(τi, t1, t2), is the total
computation time of all the instances of τi having activation
time and deadline within [t1, t2].

According to [5], dbf(τi, t1, t2) is given by:

dbf(τi, t1, t2) = ζ(τi, t1, t2)Ci (7)

where ζ(τi, t1, t2) is the total number of τi instances that
are activated in the interval [t1, t2] and have a deadline
within the interval [t1, t2]. The authors in [5] showed that
ζ(τi, t1, t2) is given by:

ζ(τi, t1, t2) = max{0,
⌊
t2−Si−Di

Ti

⌋
−max{0,

⌈
t1−Si
Ti

⌉
}+ 1}

(8)
For the whole task-set τ , the processor demand of τ in the

interval [t1, t2], denoted by dbf(τ, t1, t2), is given by:

dbf(τ, t1, t2) =
∑
τi∈τ

dbf(τi, t1, t2) (9)

For uniprocessor systems, an exact schedulability test for
constrained-deadline periodic task-sets is stated in the fol-
lowing lemma:

Lemma 1 (From [5]). A periodic task-set τ is feasible
on one processor iff Usum ≤ 1 and dbf(τ, t1, t2) ≤ (t2 − t1)
for all 0 ≤ t1 < t2 < s + 2p, where s = max{S1, · · · , Sn}
and p = lcm{T1, · · · , Tn} (lcm denotes the least-common-
multiple operator).

For multiprocessor systems, a sufficient schedulability test
is obtained by replacing Usum in Equation 6 with δsum [2].
Hence, a task-set τ is feasible on m processors if:

δsum ≤ m (10)

The exact test in Lemma 1 is known to be co-NP-hard in
the strong sense [5], while the sufficient test in Equation 10
is known to be pessimistic. As a result, several tests with
less complexity than the exact test and better accuracy than
the test in Equation 10 have been proposed in the literature
(e.g., [1, 4, 8, 13,16]).

86

4. MANAGING LATENCY
In this section, we first introduce the assumptions and

definitions needed for our analysis of the latency. Then,
we analyze the latency of applications, modeled as CSDF
graphs, when their actors are scheduled as implicit-deadline
periodic (IDP) tasks. Finally, we propose a new latency
minimized task-set representation for the applications based
on the constrained-deadline periodic (CDP) model.

4.1 Assumptions and Definitions
In the remainder of this paper, a graph G refers to an

acyclic consistent CSDF graph. We base our analysis on the
following assumptions:

A1 A graph G has a set I = {I1, I2, · · · , IK} of K periodic
input streams connected to the input actors of G. These
streams satisfy the following:

1. The set of input streams connected to an actor vi is
disjoint from all the other sets of input streams con-
nected to other actors. That is, there are no two actors
sharing the same input stream.

2. The first samples of all the streams arrive prior to or
at the same time when the actors of G start executing.

3. Each input stream Ij is characterized by a constant
inter-arrival time of the samples (also called period).
This period is assumed to be equal to the period of
the input actor which receives Ij . This assumption in-
dicates that the period for input streams can be con-
trolled by the designer to match the periods of the
actors.

A2 An actor vi consumes its input data immediately when
it starts its firing and produces its output data just before
it finishes its firing.

Now, we introduce the following definitions and results.

Definition 4. For a graph G, the execution time vector of
G, denoted by ~µ ∈ NN , is a vector such that µi ∈ ~µ is the
worst-case execution time (WCET) of actor vi ∈ V .

We assume that the worst-case execution time of an actor
includes the worst-case times needed for reading and writing
the tokens. That is, the communication cost is included in
µi.

Let η = maxvi∈V (µiqi) and Q = lcm{q1, q2, · · · , qN}.
Now, we give the following definition:

Definition 5. A graph G is said to be matched input and
output (I/O) rates graph iff:

η mod Q = 0 (11)

If Equation 11 does not hold, then G is said to be mis-
matched input/output (I/O) rates graph.

If η mod Q = 0, then there exists at least a single actor in
the graph which is fully utilizing the processor on which it
runs. This allows the graph to achieve optimal throughput.
On the other hand, if η mod Q 6= 0, then there exist idle
durations in the period of each actor which results in sub-
optimal throughput.

Definition 6. A graph G is called balanced iff:

q1µ1 = q2µ2 = · · · = qNµN (12)

where qi ∈ ~̇q is the repetition of actor vi ∈ V . If Equation
12 does not hold, then the graph is called unbalanced.

Definition 7. Let wa;z = {(va, vb), · · · , (vy, vz)} be an
output path in a graph G. The latency of wa;z under pe-
riodic input streams, denoted by L(wa;z), is the elapsed
time between the start of the first firing of va which pro-
duces data to (va, vb) and the finish of the first firing of vz
which consumes data from (vy, vz).

Consequently, we define the maximum latency of G as
follows:

Definition 8. For a graph G, the maximum latency of G
under periodic input streams, denoted by L(G), is given by:

L(G) = max
wi;j∈W

L(wi;j) (13)

Definition 9. A self-timed schedule (STS) is one where all
the actors are fired as soon as their input data are available.

A self-timed schedule does not impose any extra latency
(e.g., by the scheduler) on the actors. This leads us to the
following result proven in [17] for HSDF graphs and ex-
tended in [9] to SDF graphs.

Theorem 2 (From [9,17]). For a graph G, the min-
imum achievable latency and the maximum achievable thr-
oughput are obtained when the actors of G are scheduled
using self-timed scheduling policy.

Theorem 2 applies to CSDF graphs since any CSDF graph
can be converted to an equivalent SDF graph.

The authors of [3] proved that it is possible to schedule
a graph G actors as implicit-deadline periodic tasks using
periods given by the following definition:

Definition 10. For a graph G, a period vector ~λ, where
~λ ∈ NN , represents the periods, measured in time-units, of

the actors in G. λj ∈ ~λ is the period of actor vj ∈ V . ~λ is
given by the solution to both

q1λ1 = q2λ2 = · · · = qN−1λN−1 = qNλN (14)

and

~λ− ~µ ≥ ~0, (15)

where qj ∈ ~̇q (The basic repetition vector of G).

The minimum solution to both Equations 14 and 15 is
given by the following lemma:

Lemma 2 (From [3]). The minimum period vector of

G, denoted by ~λmin ∈ NN , is given by

λmin
i =

Q

qi

⌈
η

Q

⌉
for vi ∈ V, (16)

where qi ∈ ~̇q is the repetition of actor vi.

Definition 10 implies an equal iteration period for all the
actors. This common iteration period is formulated in the
following definition:

Definition 11. For G, the iteration period under strictly
periodic scheduling, denoted by α, is given by:

α = qiλi for any vi ∈ V (17)

where λi is the period of vi given by Definition 10.

87

In order to facilitate computing the latency, we introduce
the following definitions:

Definition 12. The cumulative production function of an
actor vi producing into a channel eu during the interval
[ts, te), denoted by prd[ts,te)(vi, eu), is the sum of the number
of tokens produced by vi into eu during the interval [ts, te).

Similarly, we define the cumulative consumption function
as follows:

Definition 13. The cumulative consumption function of
an actor vi consuming from a channel eu over the interval
[ts, te], denoted by cns[ts,te](vi, eu), is the sum of the number
of tokens consumed by vi from eu during the interval [ts, te].

Now, we proceed to the latency analysis of CSDF when it
is scheduled using the IDP model.

4.2 Latency Analysis under the IDP Model
Let φi be the earliest start time of an actor vi ∈ V . Then,

according to Definitions 7 and 8, the graph latency L(G) is
given by:

L(G) = max
wi;j∈W

(φj + ŷuj λj +Dj − (φi + x̂riλi)) (18)

where φj and φi are the earliest start times of the output
actor vj and the input actor vi, respectively, λj and λi are
the periods of vj and vi, Dj is the deadline of vj , and ŷuj and
x̂ri are two constants, such that for an output path wi;j in
which er is the first channel and eu is the last channel, x̂ri
and ŷuj are given by:

x̂ri = min{k ∈ N : xri (k) > 0} − 1 (19)

ŷuj = min{k ∈ N : yuj (k) > 0} − 1 (20)

Under the IDP model, Equation 18 becomes:

L(G) = max
wi;j∈W

(φj + (ŷuj + 1)λj − (φi + x̂riλi)) (21)

The earliest start time of actors under the IDP model is
given by the following lemma.

Lemma 3. For a graph G, the earliest start time of an ac-
tor vj ∈ V , denoted by φj, under a strictly periodic schedule
is given by

φj =

0 if prec(vj) = ∅
max

vi∈prec(vj)
(φi→j) if prec(vj) 6= ∅ (22)

where

φi→j = min
t∈[0,φi+α]

{t :

prd
[φi,max(φi,t)+k)

(vi, eu) ≥ cns
[t,max(φi,t)+k]

(vj , eu)

∀k = 0, 1, · · · , α} (23)

In case of implicit-deadline periodic tasks, prd[ts,te)(vi, eu)
is given by:

prd
[ts,te)

(vi, eu) =

{
Xu
i

(⌊
te−ts
λi

⌋)
if (te − ts) ≥ λi

0 if (te − ts) < λi
(24)

Similar to Equation 24, cns[ts,te](vi, eu) is given by:

cns
[ts,te]

(vi, eu) =


0 if te < ts

Y ui (d te−ts
λi
e+ 1) if (te − ts) mod λi = 0

Y ui (d te−ts
λi
e) if (te − ts) mod λi 6= 0

(25)
Using Equation 21, it is possible to compute the latency

under the IDP model for any acyclic CSDF graph.

Example 2. For the graph shown in Figure 2, recall that
the repetition vector is ~̇q = [3, 2, 1, 3]T . Now, assume that
the execution time vector is ~µ = [5, 8, 24, 4]T . It follows that
η = maxvi∈V (µiqi) = 24, Q = lcm{q1, q2, q3, q4} = 6, and
α = 24. Based on that, we compute the minimum period
vector ~λmin = [8, 12, 24, 8]T . To compute the earliest start
time, we first find the cumulative production/consumption
functions. For example, for v1 on e1, prd[ts,te)(v1, e1) is:

prd
[ts,te)

(v1, e1) =

{
X1

1

(⌊
te−ts

8

⌋)
if (te − ts) ≥ 8

0 if (te − ts) < 8

If we set [ts, te), for example, to [0, 16), then prd[0,16)(v1, e1)
= 2. Computing φ2 results in:

φ2 = max
vi∈prec(v2)

(φi→2) = φ1→2

Using (23) to compute φ1→2 gives:

φ1→2 = min
t∈[0,24]

{t :

prd
[0,max(0,t)+k)

(v1, e1) ≥ cns
[t,max(0,t)+k]

(v2, e1)

∀k = 0, ..., 24} = 8

Similarly, we compute the earliest start time under the
IDP model for each actor which results in ~φ = [0, 8, 24, 32]T .
Using (21), we can compute the latency of the individual
output paths as follows:

L(w1) = 32 + (0 + 1)× 8− (0 + 0× 8) = 40

L(w2) = 32 + (2 + 1)× 8− (0 + 2× 8) = 40

L(w3) = 32 + (0 + 1)× 8− (0 + 0× 8) = 40

Therefore, the graph maximum latency is given by

LIDP(G) = max
wi;j∈W

L(wi;j) = 40

Now, we show that for two sub-classes of CSDF graphs,
we can derive a simpler expression for the latency. These
two classes are: 1) balanced graphs, and 2) graphs where
~̇q = ~1.

Theorem 3. The minimum achievable latency of a bal-
anced graph G when its actors are scheduled as implicit-
deadline periodic tasks is equal to its minimum achievable
latency under self-timed scheduling.

Proof. By Definitions 6 and 10, a balanced graph has a
period vector in which each actor has a period equal to its
execution time (i.e., λi = µi). Therefore, each actor requires
execution on a dedicated processor (since Ui = µi/λi = 1).
In this case, the actor utilizes fully the processor on which it
executes. Hence, there is no idle time or latency imposed by
the scheduler and the actors execute in a way that emulates
self-timed execution. As a result, the graph has the same
latency as if it is executed in a self-timed way.

88

Theorem 3 implies that a balanced graph scheduled to
achieve the minimum achievable latency requires a number
of processors M = N , where N is the number of actors
in the graph. In such a case, the system has “one-to-one”
mapping (i.e., one task per processor). Hence, the type of
scheduler is irrelevant since each task requires a dedicated
processor, which is fully utilized, in order to achieve the
minimum achievable latency.

Theorem 4. The minimum achievable latency of a graph
G with basic repetition vector ~̇q = ~1, when its actors are
scheduled as implicit-deadline periodic tasks, is LIDP(G) =
Lmaxvi∈V µi.

Proof. Based on Lemma 2, a CSDF graph with basic
repetition vector ~̇q = ~1 will have a period vector in which all
the periods are the same and equal to maxvi∈V µi. Thus,
the latency of the graph is the sum of the periods along the
longest output path. By Algorithm 1, the longest output
path has L actors in it. Thus, the graph latency is L(G) =
Lmaxvi∈V µi.

Theorem 4 is illustrated in the motivational example in
Section 1.1 for G2 when scheduled using the IDP model.
L for G2 is equal to 3 and maxvi∈V (µiqi) = 9. Thus,
LIDP(G2) = 3× 9 = 27.

4.3 Latency Minimized Scheduling using the
CDP model

For an actor vj , φi→j depends on the time at which the
predecessors have generated enough data to ensure periodic
execution of vj once it starts. Under the IDP model, such
time is always constrained to be at the end of a predecessor
actor period. Now, let vm be the predecessor actor that
has the maximum φi→j . The idea is to set the deadline of
vm to be less than λm. The exact value is determined by
the designer using a deadline factor dm ∈ [0, 1], such that
Dm = µm + dm(λm − µm). Consequently, the definition of
prd[ts,te)(vi, eu) becomes:

prd
[ts,te)

(vi, eu) =


0 if (te − ts) < λi

Xu
i (b te−ts

λi
c+ 1) if (te−ts) mod λi

Di
≥ 1

Xu
i (b te−ts

λi
c) if (te−ts) mod λi

Di
< 1

(26)
Based on the new definition of prd[ts,te)(vi, eu) in Equation

26, the predecessor vm generates enough tokens to guaran-
tee periodic execution of vj earlier. Thus, we reduce φm→j .
However, reducing φm→j might cause another actor (e.g.,
vk) to have a larger φk→j than φm→j . Thus, the deadline re-
duction is repeated until no other actor vk with larger φk→j
is found. The whole procedure is described in Algorithm
2. We assume that the input actors are the ones with no
incoming edges (i.e., level-1 actors), and the output actors
are the ones with no outgoing edges. Note that Algorithm 2
assumes that prd[ts,te)(vi, eu) is given by Equation 26 rather
than Equation 24.

Now, we define the task-set representation of G as follows:

Definition 14. For a graph G, τCDP(G) is the constrained
deadline periodic task-set representation of the actors in G
such that τi ∈ τCDP(G) corresponds to actor vi ∈ V . τi is
given by

τi = (Si, Ci, Ti, Di) (27)

where:

Algorithm 2 Set-start-time-and-deadline(G, ~d)

Require: Acyclic CSDF graph G = 〈V,E〉
Require: Deadline factors ~d
1: for all vj ∈ V do
2: if prec(vj) = ∅ then
3: φj ← 0
4: else
5: Initialize the deadline of each actor vi ∈ prec(vj) to its

period (i.e., Di = λi)
6: Find vm ∈ prec(vj) such that φm→j = max

vi∈prec(vj)
φi→j

7: Set the deadline of vm to Dm = µm + dm(λm − µm)
8: Find φj = max

vi∈prec(vj)
φi→j with the new deadline of vm

9: Find vk ∈ prec(vj) such that φk→j = max
vi∈prec(vj)

φi→j

10: if vk 6= vm then
11: Repeat lines 6 to 9 {A new actor vk is the bottleneck}
12: else
13: φj ← max

vi∈prec(vj)
φi→j {vm remains the bottleneck

even after reducing its deadline}
14: end if
15: end if
16: end for
17: Set the deadline of each output actor vo to Do = µo+do(λo−

µo)

18: return ~φ, where φi ∈ ~φ is the start time of actor vi, and ~D,

where Di ∈ ~D is the deadline of actor vi

• Si = φi obtained by Algorithm 2
• Ci = µi,
• Ti = λi given by Lemma 2,
• Di = Di obtained by Algorithm 2

Theorem 5. τCDP(G) is schedulable.

Proof. Theorems 2 and 3 in [3] prove the existence of
a strictly periodic schedule for the actors of G when: 1)
the start time of a level-k actor vi is equal to φi given by
Equation 22 assuming prd[ts,te)(vi, eu) is given by Equation
24, and 2) the deadline Di is equal to λi. Thus, we need
to show that changing φi and Di according to Algorithm 2
does not affect the strict periodicity of the actors. According
to the CDP model (see Section 3.2.1), changing the deadline
does not affect the periodicity. Similarly, the changes to the
start time by Algorithm 2 do not affect the periodicity. This
is due to the fact that φi→j given by Equation 23 guarantees
that an actor starts only if it has enough tokens to continue
executing in a strictly periodic way. Thus, any reduction in
the start time is guaranteed to not break the strictly periodic
execution requirement.

Example 3. Going back to the graph shown in Figure 2,
we compute now the cumulative production function for v1
on e1 under the CDP model assuming deadline factors equal
to zero. This results in:

prd
[ts,te)

(v1, e1) =


0 if (te − ts) < 8

X1
1 (b te−ts

8
c+ 1) if (te−ts) mod 8

5
≥ 1

X1
1 (b te−ts

8
c) if (te−ts) mod 8

5
< 1

(28)

Now, applying Algorithm 2 assuming that ~d = ~0 results in
~φ = [0, 5, 21, 29]T , ~D = [5, 12, 24, 4]T , and LCDP(G) = 33.

To compute the buffer sizes under the CDP model, we
provide the following lemma.

89

Lemma 4. For a graph G, the minimum bounded buffer
size bu of a communication channel eu ∈ E connecting a
source actor vi with start time φi, and a destination actor
vj with start time φj, where vi, vj ∈ V , under a strictly
periodic schedule is given by

bu = max
k∈[0,1,··· ,α]

{ prd
[φi,max(φi,φj)+k)

(vi, eu)−

cns
[φj ,max(φi,φj)+k)

(vj , eu)} (29)

Note that under the CDP model, Equation 29 should be
computed using prd[ts,te)(vi, eu) given by Equation 26.

Now, we prove the following theorem regarding the la-
tency of graphs with ~̇q = ~1 under the CDP model.

Theorem 6. The minimum achievable latency of a graph
G with basic repetition vector ~̇q = ~1, when the actors of G
are scheduled as constrained-deadline periodic (CDP) tasks,
denoted by Lmin

CDP(G), is equal to its minimum achievable la-
tency under self-timed scheduling.

Proof. When the actors of G are scheduled as CDP tasks
with ~d = ~0, an actor vi ∈ V is started immediately after all
its predecessors have finished one firing. Hence, the latency
encountered by the first sample is equal to the sum of actors’
execution times along the output path with the largest sum
of actors’ execution times. This is equivalent to the latency
under self-timed scheduling.

Theorem 6 states that the CDP model achieves optimal la-
tency and rate (i.e., minimum achievable latency and maxi-

mum achievable throughput) for graphs with ~̇q = ~1.

5. EVALUATION
We evaluate the constrained-deadline periodic represent-

ation proposed in Section 4 by performing an experiment on
a set of 19 real-life streaming applications. The objective
of the experiment is to compare the latency of streaming
applications under the constrained-deadline periodic sche-
duling model to their minimum achievable latency obtained
via self-timed scheduling.

5.1 Benchmarks
The streaming applications used in the experiment are the

same as the ones used in [3]. In total, 19 applications are
considered as shown in Table 2. The graphs are a mixture
of CSDF and SDF graphs. The third column (N) shows the
number of actors in each application , and the fourth column
(Q) shows the least-common-multiple of the repetition vec-
tor elements (i.e., Q = lcm{q1, · · · , qN}). The fifth column
(Rmax

SPS /RSTS) shows the ratio of the maximum throughput
under strictly periodic scheduling (i.e., Rmax

SPS) to the maxi-
mum achievable throughput of the application (i.e., RSTS).

We use the SDF3 tool-set [18] for computing the mini-
mum latency of SDF graphs. SDF3 is a powerful analysis
tool-set for analyzing CSDF/SDF graphs and is capable of
computing several metrics like repetition vector, maximum
achievable throughput, etc. For SDF graphs, SDF3 is capa-
ble as well of computing the minimum achievable latency.
Thus, we use this capability to compute the minimum achi-
evable latency of a graph and use it as a reference point for
comparing the latency under the IDP and CDP models. For
CSDF graphs, we construct the self-timed schedule manu-
ally and use it to compute the latency.

Table 2: Benchmarks used for evaluation
Domain Application N Q Rmax

SPS/RSTS

Signal Processing

Multi-channel beamformer 57 1 1.0
Discrete cosine transform (DCT) 8 1 1.0
Fast Fourier transform (FFT) ker-
nel

17 1 1.0

Filterbank for multirate signal pro-
cessing

85 1 1.0

Time delay equalization (TDE) 29 1 1.0

Cryptography
Data Encryption Standard (DES) 53 1 1.0
Serpent 120 1 1.0

Sorting Bitonic Parallel Sorting 40 1 1.0

Video processing
MPEG2 video 23 1 1.0
H.263 video decoder 4 594 1.0

Audio processing

MP3 audio decoder 14 2 1.0
CD-to-DAT rate converter (SDF) 6 23520 0.04
CD-to-DAT converter (CSDF) 6 658560 0.05
Vocoder 114 1 1.0

Communication

Software FM radio with equalizer 43 1 1.0
Data modem 6 16 1.0
Satellite receiver 22 5280 0.2
Digital Radio Mondiale receiver 4 288000 1.0

Medical Heart pacemaker 4 320 1.0

Table 3: Configurations used for latency comparison
Configuration Deadline Factor (di) Deadline (Di)

O1 1 Ti
O2 0.75 Ci + 3(Ti − Ci)/4
O3 0.5 Ci + (Ti − Ci)/2
O4 0.25 Ci + (Ti − Ci)/4
O5 0 Ci

5.2 Experiment: Latency Comparison
In this experiment, we compare the latency resulting from

the constrained-deadline periodic scheduling to the mini-
mum achievable latency of a streaming application. The
minimum achievable latency of a streaming application mod-
eled as a CSDF graph is its latency under self-timed sche-
duling as mentioned in Section 4. In Algorithm 2, we do not

specify an explicit value for the deadline factors vector ~d.
Thus, we evaluate the effect of the deadline factors values
on the latency and resource requirements. This is accom-
plished by using five configurations with equal periods and
different deadline factors. The used periods are the mini-
mum ones given by Lemma 2, while the deadline factors are
the ones outlined in Table 3. The first configuration, cal-
led O1, is the one obtained by setting the deadline factor
equal to 1 (i.e., Di = Ti). Thus, O1 results in the implicit-
deadline representation. The last configuration O5 is the
one obtained by setting the deadline factor equal to 0 (i.e.,
Di = Ci). O2 till O4 represent intermediate values of the
deadline factor. The STS latency is computed using the
sdf3analysis tool from SDF3 using the latency(min_st)
algorithm with auto-concurrency disabled and unbounded
FIFO channels sizes.

Figure 3 shows the ratio of the latency of three configura-
tions (O1, O3, and O5) to the minimum achievable latency
(i.e., STS latency). A ratio equal to 1.0 means that the CDP
latency is equal to the STS latency. We see that the CDP
model with di = 0 (i.e., configuration O5) achieves the min-
imum achievable latency for 14 graphs, and even if the basic
repetition vector of the graph is not equal to ~1. We also see
that the mis-matched I/O rates applications (i.e., CD2DAT-
(S,C) and Satellite) have higher latency under strictly peri-
odic scheduling. The only matched I/O rates applications
with higher latency under strictly periodic scheduling are

90

Receiver and Pacemaker. They have higher latency because
their execution times have large variations between firings.
Such variation is captured under self-timed scheduling, while
our strictly periodic scheduling assumes always the WCET.
It is evident that the IDP model (i.e., configuration O1) in-
creases the latency on average by 5x compared to the STS
latency. O3 shows approximately a 36% average reduction
in latency compared to O1 and an average 3.2x increase in
latency compared to the STS latency.

 1

 3

 5

 7

 9

 11

 13

 15

 17

 19

 21

Beam
form

er

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

BitonicSort

M
PEG

2

H
.263D

ecoder

M
P3D

ecoder

C
D
2D

AT-S

C
D
2D

AT-C

Vocoder

FM
R
adio

M
odem

Satellite

R
eceiver

Pacem
aker

R
a
ti
o
 t
o
 t
h
e
 m

in
im

u
m

 a
c
h
ie

v
a
b
le

 l
a
te

n
c
y

 O1
 O3
 O5

Figure 3: Ratios of the latency under configurations
O1, O3, and O5 from Table 3 to the STS latency

Now, we evaluate the same three configurations (i.e., O1,
O3, and O5) in terms of resource usage as shown in Figure
4. We do that by computing the minimum number of pro-
cessors needed to schedule an application. For O1, this is
accomplished by using Equation 6. For O3 and O5, we use
the sufficient test in Equation 10. We see that the minimum
latency achieved by O5 in most cases comes at a price of
significant increase in resource requirements. In O5, the to-
tal density δsum is equal to the number of actors (i.e., N in
Table 2) for 16 applications. If achieving the minimum ac-
hievable latency is a requirement, then the designer can use
a more accurate schedulablility test to reduce the number of
processors (see Section 3.2.2). We also see that increasing
the deadline increases the latency but reduces the resource
requirements and vice versa. Thus, when the designer has
flexibility over the desired latency, he/she might make a
trade-off between latency and resources. Such a trade-off
is illustrated in Figure 5. In Figure 5, the average ratios
of the latency and the number of processors are shown as
functions of the configuration. O1-O5 are the configurations
shown in Table 3, while OSTS represents the self-timed sc-
hedule constructed using one-to-one mapping (i.e., one task
per processor). The latency ratio for the jth configuration
is given by

Ωj(L) =

∑
Gi∈G(LOj (Gi)/LOSTS(Gi))

|G| (30)

where G is the set of applications in Table 2 and Gi is the
ith application. Similarly, the resource usage ratio for the
jth configuration is given by

Ωj(M) =

∑
Gi∈G(MOj (Gi)/MO1(Gi))

|G| (31)

 0

 20

 40

 60

 80

 100

 120

Beam
form

er

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

BitonicSort

M
PEG

2

H
.263D

ecoder

M
P3D

ecoder

C
D
2D

AT-S

C
D
2D

AT-C

Vocoder

FM
R
adio

M
odem

Satellite

R
eceiver

Pacem
aker

N
u
m

b
e
r

o
f
P

ro
c
e
s
s
o
rs

 O1
 O3
 O5
 N

Figure 4: Resource usage for configurations O1, O3,
and O5 from Table 3

We see clearly that the latency decreases almost linearly
as we decrease the deadline. However, we see that the num-
ber of processors increases non-linearly as we decrease the
deadline. A “compromise” value for the deadline would be
around O4 where we see a latency of 2.4x compared to the
STS latency achieved using around 1.7x the number of pro-
cessors needed by O1.

 0

 1

 2

 3

 4

 5

 6

O1 O2 O3 O4 O5 OSTS

R
a
ti
o

Ωj (L)
Ωj (M)

Figure 5: Average ratios of latency and number of
processors as functions of the configuration

5.3 Decision Tree for Real-Time Scheduling of
CSDF

Based on the results proven in Section 4 and the evalu-
ation results in Section 5.2, we present a decision tree for
selecting the real-time periodic task model for scheduling
CSDF graphs. The decision tree is illustrated in Figure
6. The first decision is to determine whether the graph is
matched I/O rates or not. It is proven in [3] that the periodic
task model achieves the maximum achievable throughput for
matched I/O rates graphs. If the graph is matched I/O rates
and balanced, then the IDP model is latency and rate optimal
(LRO). If the graph is matched I/O but unbalanced, then
the CDP model helps in reducing the latency. For certain

91

Acyclic CSDF graph G = 〈V,E〉

matched I/O?
(see Def. 5)

Rmax
SPS = Rmax

STS

Rmax
SPS < Rmax

STS

balanced?
(see Def. 6)

IDP is LRO
Lmin

IDP = Lmin
STS

~̇q = ~1?
(see Theor. 6)

CDP is LRO
Lmin

CDP = Lmin
STS

Use CDP to reduce L
Lmin

CDP ≥ Lmin
STS

Yes No

Yes No

Yes
No

Figure 6: Decision tree for scheduling CSDF actors
as real-time periodic tasks. Lmin

IDP and Lmin
CDP refer to

the latency when ~λ = ~λmin and ~d = ~0 (for the CDP
case)

class of graphs (e.g., graphs with ~̇q = ~1), the CDP model is
also latency and rate optimal. For mis-matched I/O graphs,
the CDP helps in reducing the latency if the throughput
achieved under strictly periodic scheduling is acceptable.

6. CONCLUSIONS
We analyze the latency of acyclic CSDF graphs when

scheduled using the implicit-deadline periodic (IDP) model.
We show that the IDP model achieves the minimum achi-
evable latency for a class of graphs called balanced graphs,
however, it increases the latency significantly for unbalanced
graphs. To alleviate this problem, we propose an alternative
task representation for unbalanced graphs actors based on
the constrained-deadline periodic (CDP) model. We prove
that the CDP representation achieves the minimum achiev-
able latency for graphs with basic repetition vector equal to
~1. Based on empirical evaluations, we show that the CDP
representation delivers the minimum achievable latency even
for graphs with basic repetition vector different from ~1. We
summarize our results in the form of a decision tree to assist
the designer in choosing the appropriate real-time periodic
task model for scheduling acyclic CSDF graphs.

7. ACKNOWLEDGMENTS
This work has been supported by CATRENE/MEDEA+

project number 2A718 (TSAR: Tera-scale multicore proces-
sor architecture).

8. REFERENCES
[1] K. Albers and F. Slomka. Efficient feasibility analysis

for real-time systems with EDF scheduling. In Proc.
DATE, pages 492–497, 2005.

[2] T. Baker and S. Baruah. Schedulability Analysis of
Multiprocessor Sporadic Task Systems. In I. Lee et al.,
editors, Handbook of Real-Time and Embedded
Systems. Chapman & Hall/CRC, Boca Raton, FL, 1st
edition, 2007.

[3] M. Bamakhrama and T. Stefanov. Hard-real-time
scheduling of data-dependent tasks in embedded
streaming applications. In Proc. EMSOFT, pages
195–204, 2011.

[4] S. Baruah and N. Fisher. The partitioned
multiprocessor scheduling of deadline-constrained
sporadic task systems. IEEE Trans. Comput.,
55(7):918–923, 2006.

[5] S. Baruah, L. Rosier, and R. Howell. Algorithms and
complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. Real-Time
Syst., 2:301–324, 1990.

[6] G. Bilsen et al. Cyclo-static dataflow. IEEE Trans.
Signal Process., 44(2):397–408, 1996.

[7] R. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM Comput.
Surv., 43(4):35:1–35:44, 2011.

[8] U. Devi. An improved schedulability test for
uniprocessor periodic task systems. In Proc. ECRTS,
pages 23–30, 2003.

[9] A. Ghamarian et al. Latency Minimization for
Synchronous Data Flow Graphs. In Proc. DSD, pages
189–196, 2007.

[10] S. Goddard. On the Management of Latency in the
Synthesis of Real-Time Signal Processing Systems
from Processing Graphs. PhD thesis, University of
North Carolina at Chapel Hill, 1998.

[11] L. Karam et al. Trends in multicore DSP platforms.
IEEE Signal Process. Mag., 26(6):38–49, 2009.

[12] E. Lee and D. Messerschmitt. Synchronous data flow.
Proc. IEEE, 75(9):1235–1245, 1987.

[13] A. Masrur, S. Chakraborty, and G. Färber.
Constant-Time Admission Control for Partitioned
EDF. In Proc. ECRTS, pages 34–43, 2010.

[14] O. Moreira and M. Bekooij. Self-Timed Scheduling
Analysis for Real-Time Applications. EURASIP J.
Adv. Signal Process., 2007:1–15, 2007.

[15] O. Moreira, F. Valente, and M. Bekooij. Scheduling
multiple independent hard-real-time jobs on a
heterogeneous multiprocessor. In Proc. EMSOFT,
pages 57–66, 2007.

[16] R. Pellizzoni and G. Lipari. A new sufficient feasibility
test for asynchronous real-time periodic task sets. In
Proc. ECRTS, pages 204–211, 2004.

[17] S. Sriram and S. Bhattacharyya. Embedded
Multiprocessors: Scheduling and Synchronization.
CRC Press, Boca Raton, FL, 2nd edition, 2009.

[18] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For
Free. In Proc. ACSD, pages 276–278, 2006.

92

