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1 Internal Representation of thebarvinok library

Ourbarvinok library is built on top ofPolyLib (Wilde 1993; Loechner 1999). In par-
ticular, it reuses the implementations of the algorithm of Loechner and Wilde (1997)
for computing parametric vertices and the algorithm of Clauss and Loechner (1998) for
computing chamber decompositions. Initially, our librarywas meant to be a replace-
ment for the algorithm of Clauss and Loechner (1998), also implemented inPolyLib,
for computing quasi-polynomials. To ease the transition ofapplication programs we
tried to reuse the existing data structures as much as possible.

1.1 Existing Data Structures

InsidePolyLib integer values are represented by theValue data type. Depending on
a configure option, the data type may either by a 32-bit integer, a 64-bit integer or an
arbitrary precision integer usingGMP. Thebarvinok library requires thatPolyLib is
compiled with support for arbitrary precision integers.

The basic structure for representing (unions of) polyhedrais aPolyhedron.

typedef struct polyhedron {

unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;

Value **Constraint;

Value **Ray;

Value *p_Init;

int p_Init_size;

struct polyhedron *next;

} Polyhedron;

The attributeDimension is the dimension of the ambient space, i.e., the number of
variables. The attributesConstraint andRay point to two-dimensional arrays of con-
straints and generators, respectively. The number of rows is stored inNbConstraints
andNbRays, respectively. The number of columns in both arrays is equalto1+Dimension+1.
The first column ofConstraint is either 0 or 1 depending on whether the constraint
is an equality (0) or an inequality (1). The number of equalities is stored inNbEq. If
the constraint is〈a, x〉+ c ≥ 0, then the next columns contain the coefficientsai and the
final column contains the constantc. The first column ofRay is either 0 or 1 depending
on whether the generator is a line (0) or a vertex or ray (1). The number of lines is
stored inNbBid. Let d be the least common multiple (lcm) of the denominators of
the coordinates of a vertexv, then the next columns containdvi and the final column
containsd. For a ray, the final column contains 0. The fieldnext points to the next
polyhedron in the union of polyhedra. It is0 if this is the last (or only) polyhedron in
the union. For more information on this structure, we refer to Wilde (1993).

Quasi-polynomials are represented using theevalue andenode structures.

typedef enum { polynomial, periodic, evector } enode_type;

typedef struct _evalue {

Value d; /* denominator */

4



union {

Value n; /* numerator (if denominator != 0) */

struct _enode *p; /* pointer (if denominator == 0) */

} x;

} evalue;

typedef struct _enode {

enode_type type; /* polynomial or periodic or evector */

int size; /* number of attached pointers */

int pos; /* parameter position */

evalue arr[1]; /* array of rational/pointer */

} enode;

If the fieldd of anevalue is zero, then theevalue is a placeholder for a pointer to an
enode, stored inx.p. Otherwise, theevalue is a rational number with numeratorx.n
and denominatord. An enode is either apolynomial or aperiodic, depending on
the value oftype. The length of the arrayarr is stored insize. For apolynomial,
arr contains the coefficients. For aperiodic, it contains the values for the different
residue classes modulo the parameter indicated bypos. For a polynomial,pos refers
to the variable of the polynomial. The value ofpos is 1 for the first parameter. That is,
if the value ofpos is 1 and the first parameter isp, and if the length of the array isl,
then in case it is a polynomial, theenode represents

arr[0] + arr[1]p+ arr[2]p2 + · · · + arr[l-1]pl−1.

If it is a periodic, then it represents

[arr[0], arr[1], arr[2], . . . , arr[l-1]]p .

Note that the elements of aperiodic may themselves be otherperiodics or even
polynomials. In our library, we only allow the elements of aperiodic to be other
periodics or rational numbers. The chambers and their correspondingquasi-polynomial
are stored inEnumeration structures.

typedef struct _enumeration {

Polyhedron *ValidityDomain; /* constraints on the parameters */

evalue EP; /* dimension = combined space */

struct _enumeration *next; /* Ehrhart Polynomial,

corresponding to parameter

values inside the domain

ValidityDomain above */

} Enumeration;

For more information on these structures, we refer to Loechner (1999).

Example 1.1 Figure 1.2 is a skillful reconstruction of Figure 2 from Loechner (1999).
It shows the contents of theenode structures representing the quasi-polynomial[1,2]pp2+

3p+ 5
2.
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type polynomial

size 3

pos 1

arr[0]
d 2

x.n 5

arr[1]
d 1

x.n 3

arr[2]
d 0

x.p

type periodic

size 2

pos 1

arr[0]
d 1

x.n 1

arr[1]
d 1

x.n 2

enode

enode

Figure 1.2: The quasi-polynomial [1,2]pp2 + 3p+ 5
2.

1.2 Options

Thebarvinok options structure contains various options that influence the behavior
of the library.

struct barvinok_options {

struct barvinok_stats *stats;

/* PolyLib options */

unsigned MaxRays;

/* NTL options */

/* LLL reduction parameter delta=LLL_a/LLL_b */

long LLL_a;

long LLL_b;

/* barvinok options */

#define BV_SPECIALIZATION_BF 2

#define BV_SPECIALIZATION_DF 1

#define BV_SPECIALIZATION_RANDOM 0

#define BV_SPECIALIZATION_TODD 3

int incremental_specialization;

unsigned long max_index;

int primal;

int lookup_table;

int count_sample_infinite;

int try_Delaunay_triangulation;

#define BV_APPROX_SIGN_NONE 0
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#define BV_APPROX_SIGN_APPROX 1

#define BV_APPROX_SIGN_LOWER 2

#define BV_APPROX_SIGN_UPPER 3

int polynomial_approximation;

#define BV_APPROX_NONE 0

#define BV_APPROX_DROP 1

#define BV_APPROX_SCALE 2

#define BV_APPROX_VOLUME 3

#define BV_APPROX_BERNOULLI 4

int approximation_method;

#define BV_APPROX_SCALE_FAST (1 << 0)

#define BV_APPROX_SCALE_NARROW (1 << 1)

#define BV_APPROX_SCALE_NARROW2 (1 << 2)

#define BV_APPROX_SCALE_CHAMBER (1 << 3)

int scale_flags;

#define BV_VOL_LIFT 0

#define BV_VOL_VERTEX 1

#define BV_VOL_BARYCENTER 2

int volume_triangulate;

/* basis reduction options */

#define BV_GBR_NONE 0

#define BV_GBR_GLPK 1

#define BV_GBR_CDD 2

int gbr_lp_solver;

/* bernstein options */

#define BV_BERNSTEIN_NONE 0

#define BV_BERNSTEIN_MAX 1

#define BV_BERNSTEIN_MIN -1

int bernstein_optimize;

#define BV_BERNSTEIN_FACTORS 1

#define BV_BERNSTEIN_INTERVALS 2

int bernstein_recurse;

#define BV_LP_POLYLIB 0

#define BV_LP_GLPK 1

#define BV_LP_CDD 2

#define BV_LP_CDDF 3

#define BV_LP_PIP 4

int lp_solver;

#define BV_HULL_GBR 0

#define BV_HULL_HILBERT 1

int integer_hull;
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};

struct barvinok_options *barvinok_options_new_with_defaults();

The functionbarvinok options new with defaults can be used to create a
barvinok options structure with default values.

• PolyLib options

– MaxRays
The value ofMaxRays is passed to variousPolyLib functions and defines
the maximum size of a table used in the double description computation in
the PolyLib functionChernikova. In earlier versions ofPolyLib, this
parameter had to be conservatively set to a high number to ensure suc-
cessful operation, resulting in significant memory overhead. Our change
to allow this table to grow dynamically is available in recent versions of
PolyLib. In these versions, the value no longer indicates the maximal ta-
ble size, but rather the size of the initial allocation. Thisvalue may be set
to 0 or left as set bybarvinok options new with defaults.

• NTL options

– LLL a

– LLL b
The values used for the reduction parameter in the call toNTL’s implemen-
tation of Lenstra, Lenstra and Lovasz’ basis reduction algorithm (LLL).

• barvinok specific options

– incremental specialization
Selects the specialization algorithm to be used. If set to0 then a direct spe-
cialization is performed using a random vector. Value1 selects a depth first
incremental specialization, while value2 selects a breadth first incremen-
tal specialization. The default is selected by the--enable-incremental
configure option. For more information we refer to Verdoolaege (2005,
Section 4.4.3).

1.3 Data Structures for Quasi-polynomials

Internally, we do not represent our quasi-polynomials as step-polynomials, but, simi-
larly to Loechner (1999), as polynomials with periodic numbers for coefficients. How-
ever, we also allow our periodic numbers to be represented byfractional parts of
degree-1 polynomials rather than an explicit enumeration using theperiodic type.
By default, the current version ofbarvinok usesperiodics, but this can be changed
through the--enable-fractional configure option. In the latter case, the quasi-
polynomial using fractional parts can also be converted to an actual step-polynomial
usingevalue frac2floor, but this is not fully supported yet.
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For reasons of compatibility,1 we shoehorned our representations for piecewise
quasi-polynomials into the existing data structures. To this effect, we introduced four
new types,fractional, relation, partition andflooring.

typedef enum { polynomial, periodic, evector, fractional,

relation, partition, flooring } enode_type;

The fieldpos is not used in most of these additional types and is thereforeset to-1.
The typesfractional andflooring represent polynomial expressions in a frac-

tional part or a floor respectively. The generator is stored in arr[0], while the coeffi-
cients are stored in the remaining array elements. That is, anenode of typefractional
represents

arr[1] + arr[2]{arr[0]} + arr[3]{arr[0]}2 + · · · + arr[l-1]{arr[0]}l−2.

An enode of typeflooring represents

arr[1] + arr[2]⌊arr[0]⌋ + arr[3]⌊arr[0]⌋2 + · · · + arr[l-1]⌊arr[0]⌋l−2.

Example 1.3 The internal representation of the quasi-polynomial

(

1+ 2
{ p

2

})

p2 + 3p+
5
2

is shown in Figure 1.4.

Therelation type is used to represent strides. In particular, if the value of size
is 2, then the value of arelation is (in pseudo-code):

(value(arr[0]) == 0) ? value(arr[1]) : 0

If the size is 3, then the value is:

(value(arr[0]) == 0) ? value(arr[1]) : value(arr[2])

The type ofarr[0] is typicallyfractional.
Finally, the partition type is used to represent piecewise quasi-polynomials.

We prefer to encode this information insideevalues themselves rather than using
Enumerations since we want to perform the same kinds of operations on bothquasi-
polynomials and piecewise quasi-polynomials. Anenode of type partition may
not be nested inside anotherenode. The size of the array is twice the number of
“chambers”. Pointers to chambers are stored in the even slots, whereas pointer to the
associated quasi-polynomials are stored in the odd slots. To be able to store pointers to
chambers, the definition ofevalue was changed as follows.

typedef struct _evalue {

Value d; /* denominator */

union {

Value n; /* numerator (if denominator > 0) */

1Also known as laziness.
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type polynomial

size 3

pos 1

arr[0]
d 2

x.n 5

arr[1]
d 1

x.n 3

arr[2]
d 0

x.p

type fractional

size 3

pos -1

arr[0]
d 0

x.p

arr[1]
d 1

x.n 1

arr[2]
d 1

x.n 2

fractional

3

-1

0

type polynomial

size 2

pos 1

arr[0]
d 1

x.n 0

arr[1]
d 2

x.n 1

enode enode

enode

Figure 1.4: The quasi-polynomial
(

1+ 2
{

p
2

})

p2 + 3p+ 5
2.

struct _enode *p; /* pointer (if denominator == 0) */

Polyhedron *D; /* domain (if denominator == -1) */

} x;

} evalue;

Note that we allow a “chamber” to be a union of polyhedra as discussed in Verdoolaege
(2005, Section 4.5.1). Chambers with extra variables, i.e., those of Verdoolaege (2005,
Section 4.6.5), are only partially supported. The fieldpos is set to the actual dimension,
i.e., the number of parameters.

1.4 Operations on Quasi-polynomials

In this section we discuss some of the more important operations onevalues provided
by thebarvinok library. Some of these operations are extensions of the functions from
PolyLib with the same name.

void eadd(const evalue *e1,evalue *res);

void emul(const evalue *e1, evalue *res);

The functionseadd andemul takes two (pointers to)evalues e1 andres and com-
putes their sum and product respectively. The result is stored inres, overwriting (and
deallocating) the original value ofres. It is an error if exactly one of the arguments of
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eadd is of typepartition (unless the other argument is0). The addition and multipli-
cation operations are described in Verdoolaege (2005, Section 4.5.1) and Verdoolaege
(2005, Section 4.5.2) respectively.

The functioneadd is an extension of the functionnew eadd from Seghir (2002).
Apart from supporting the additional types from Section 1.3, the new version also
additionally imposes an order on the nesting of differentenodes. Without such an
ordering,evalues could be constructed representing for example

(0y0 + (0x0 + 1x1)y1)x0 + (0y0 − 1y1)x1,

which is just a funny way of saying 0.

void eor(evalue *e1, evalue *res);

The functioneor implements the union operation from Verdoolaege (2005, Section 4.5.3).
Both arguments are assumed to correspond to indicator functions.

evalue *esum(evalue *E, int nvar);

evalue *evalue_sum(evalue *E, int nvar, unsigned MaxRays);

The functionesum has been superseded byevalue sum. The functionevalue sum
performs the summation operation from Verdoolaege (2005, Section 4.5.4). The piece-
wise step-polynomial represented byE is summated over its firstnvar variables. Note
thatE must be zero or of typepartition. The function returns the result in a newly
allocatedevalue. Note also thatE needs to have been converted fromfractionals
to floorings using the functionevalue frac2floor.

void evalue_frac2floor(evalue *e);

This function also ensures that the arguments of thefloorings are positive in the
relevant chambers. It currently assumes that the argument of eachfractional in the
originalevalue has a minimum in the corresponding chamber.

double compute_evalue(const evalue *e, Value *list_args);

Value *compute_poly(Enumeration *en,Value *list_args);

evalue *evalue_eval(const evalue *e, Value *values);

The functionscompute evalue, compute poly andevalue eval evaluate a (piece-
wise) quasi-polynomial at a certain point. The argumentlist_args points to an
array of Values that is assumed to be long enough. Thedouble return value of
compute evalue is inherited fromPolyLib.

void print_evalue(FILE *DST, const evalue *e, char **pname);

The functionprint evalue dumps a human-readable representation to the stream
pointed to byDST. The argumentpname points to an array of character strings repre-
senting the parameter names. The array is assumed to be long enough.

int eequal(const evalue *e1, const evalue *e2);

11



The functioneequal return true (1) if its two arguments are structurally identical. I.e.,
it doesnot check whether the two (piecewise) quasi-polynomial represent the same
function.

void reduce_evalue (evalue *e);

The functionreduce evalue performs some simplifications onevalues. Here, we
only describe the simplifications that are directly relatedto the internal representation.
Some other simplifications are explained in Verdoolaege (2005, Section 4.7.2). If the
highest order coefficients of apolynomial, fractional or flooring are zero (pos-
sibly after some other simplifications), then the size of thearray is reduced. If only
the constant term remains, i.e., the size is reduced to 1 forpolynomial or to 2 for the
other types, then the whole node is replaced by the constant term. Additionally, if the
argument of afractional has been reduced to a constant, then the whole node is re-
placed by its partial evaluation. Arelation is similarly reduced if its second branch
or both its branches are zero. Chambers with zero associatedquasi-polynomials are
discarded from apartition.

1.5 Generating Functions

The representation of rational generating functions uses some basic types from the
NTL library (Shoup 2004) for representing arbitrary precisionintegers (ZZ) as well as
vectors (vec ZZ) and matrices (mat ZZ) of such integers. We further introduces a type
QQ for representing a rational number and use vectors (vec QQ) of such numbers.

struct QQ {

ZZ n;

ZZ d;

};

NTL_vector_decl(QQ,vec_QQ);

Each term in a rational generating function is represented by ashort rat structure.

struct short_rat {

struct {

/* rows: terms in numerator */

vec_QQ coeff;

mat_ZZ power;

} n;

struct {

/* rows: factors in denominator */

mat_ZZ power;

} d;

};

The fieldsn andd represent the numerator and the denominator respectively.Note that
in our implementation we combine terms with the same denominator. In the numerator,

12



n.coeff 3 2

2 1

n.power 2 3

5 -7

d.power 1 -3

0 2

short rat

Figure 1.6: Representation of
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each element ofcoeff and each row ofpower represents a single such term. The
vectorcoeff contains the rational coefficientsαi of each term. The columns ofpower
correspond to the powers of the variables. In the denominator, each row ofpower
corresponds to the powerbi j of a factor in the denominator.

Example 1.5 Figure 1.6 shows the internal representation of

3
2 x2

0x3
1 + 2 x5

0x−7
1

(1− x0x−3
1 )(1− x2

1)
.

The whole rational generating function is represented by agen fun structure.

typedef std::set<short_rat *,

short_rat_lex_smaller_denominator > short_rat_list;

struct gen_fun {

short_rat_list term;

Polyhedron *context;

void add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den);

void add(short_rat *r);

void add(const QQ& c, const gen_fun *gf,

barvinok_options *options);

void substitute(Matrix *CP);

gen_fun *Hadamard_product(const gen_fun *gf,

barvinok_options *options);

void print(std::ostream& os,

unsigned int nparam, char **param_name) const;

operator evalue *() const;

ZZ coefficient(Value* params, barvinok_options *options) const;

void coefficient(Value* params, Value* c) const;

gen_fun(Polyhedron *C);

gen_fun(Value c);
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gen_fun(const gen_fun *gf);

˜gen_fun();

};

A newgen fun can be constructed either as empty rational generating function (possi-
bly with a given contextC), as a copy of an existing rational generating functiongf, or
as constant rational generating function with value for theconstant term specified byc.
The firstgen fun::add method adds a new term to the rational generating function,
described by the coefficientc, the numeratornum and the denominatorden. It makes
all powers in the denominator lexico-positive, orders themin lexicographical order and
inserts the new term interm according to the lexicographical order of the combined
powers in the denominator. The secondgen fun::add method addsc timesgf to the
rational generating function.
The methodgen fun::operator evalue * performs the conversion from rational
generating function to piecewise step-polynomial explained in Verdoolaege (2005, Sec-
tion 4.5.5). ThePolyhedron context is the superset of all points where the enumera-
tor is non-zero used during this conversion, i.e., it is the set Q from Verdoolaege (2005,
Equation 4.31). Ifcontext is NULL the maximal allowed context is assumed, i.e., the
maximal region with lexico-positive rays.
The methodgen fun::coefficient computes the coefficient of the term with power
given byparams and stores the result inc. This method performs essentially the same
computations asgen fun::operator evalue *, except that it adds extra equality
constraints based on the specified values for the power.
The methodgen fun::substitute performs the monomial substitution specified by
the homogeneous matrixCP that maps a set of “compressed parameters” (Meister 2004)
to the original set of parameters. That is, if we are given a rational generating func-
tion G(z) that encodes the explicit functiong(i′), wherei′ are the coordinates of the
transformed space, andCP represents the mapi = Ai′ + a back to the original space
with coordinatesi, then this method transforms the rational generating function toF(x)
encoding the same explicit functionf (i), i.e.,

f (i) = f (Ai′ + a) = g(i′).

This means that the coefficient of the termxi = xAi′+a in F(x) should be equal to the
coefficient of the termzi′ in G(z). In other words, if

G(z) =
∑

i

ǫi
zvi

∏

j(1− zbi j )

then

F(x) =
∑

i

ǫi
xAvi+a

∏

j(1− xAbi j )
.

The methodgen fun::Hadamard product computes the Hadamard product of the
current rational generating function with the rational generating functiongf, as ex-
plained in Verdoolaege (2005, Section 4.5.2).
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1.6 Counting Functions

Our library provides essentially three different counting functions: one for non-parametric
polytopes, one for parametric polytopes and one for parametric sets with existential
variables. The old versions of these functions have a “MaxRays” argument, while the
new versions have a more generalbarvinok options argument. For more informa-
tion onbarvinok options, see Section 1.2.

void barvinok_count(Polyhedron *P, Value* result,

unsigned NbMaxCons);

void barvinok_count_with_options(Polyhedron *P, Value* result,

struct barvinok_options *options);

The functionbarvinok count or barvinok count with options enumerates the
non-parametric polytopeP and returns the result in theValue pointed to byresult,
which needs to have been allocated and initialized. IfP is a union, then only the first set
in the union will be taken into account. For the meaning of theargumentNbMaxCons,
see the discussion onMaxRays in Section 1.2.

The functionbarvinok enumerate for enumerating parametric polytopes was
meant to be a drop-in replacement ofPolyLib’s Polyhedron Enumerate function.
Unfortunately, the latter has been changed to accept an extra argument in recent ver-
sions ofPolyLib as shown below.

Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C,

unsigned MaxRays);

extern Enumeration *Polyhedron_Enumerate(Polyhedron *P,

Polyhedron *C, unsigned MAXRAYS, char **pname);

The argumentMaxRays has the same meaning as the argumentNbMaxCons above.
The argumentP refers to the (d + n)-dimensional polyhedron defining the parametric
polytope. The argumentC is ann-dimensional polyhedron containing extra constraints
on the parameter space. Its primary use is to indicate how many of the dimensions in
P refer to parameters as any constraint inC could equally well have been added toP
itself. Note that the dimensions referring to the parameters should appearlast. If either
P or C is a union, then only the first set in the union will be taken into account. The
result is a newly allocatedEnumeration. As an alternative we also provide a function
(barvinok enumerate ev or barvinok enumerate with options) that returns an
evalue.

evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C,

unsigned MaxRays);

evalue* barvinok_enumerate_with_options(Polyhedron *P,

Polyhedron* C, struct barvinok_options *options);

For enumerating parametric sets with existentially quantified variables, we provide
two functions:barvinok enumerate e andbarvinok enumerate pip.

evalue* barvinok_enumerate_e(Polyhedron *P,

unsigned exist, unsigned nparam, unsigned MaxRays);

15



evalue* barvinok_enumerate_e_with_options(Polyhedron *P,

unsigned exist, unsigned nparam,

struct barvinok_options *options);

evalue *barvinok_enumerate_pip(Polyhedron *P,

unsigned exist, unsigned nparam, unsigned MaxRays);

evalue* barvinok_enumerate_pip_with_options(Polyhedron *P,

unsigned exist, unsigned nparam,

struct barvinok_options *options);

evalue *barvinok_enumerate_scarf(Polyhedron *P,

unsigned exist, unsigned nparam,

struct barvinok_options *options);

The first function tries the simplification rules from Verdoolaege (2005, Section 4.6.2)
before resorting to the method based on Parametric Integer Programming (PIP) from
Verdoolaege (2005, Section 4.6.3). The second function immediately applies the tech-
nique from Verdoolaege (2005, Section 4.6.3). The argumentexist refers to the num-
ber of existential variables, whereas the argumentnparam refers to the number of pa-
rameters. The order of the dimensions inP is: counted variables first, then existential
variables and finally the parameters. The functionbarvinok enumerate scarf per-
forms the same computation as the functionbarvinok enumerate scarf series
below, but produces an explicit representation instead of agenerating function.

gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C,

unsigned MaxRays);

gen_fun * barvinok_series_with_options(Polyhedron *P,

Polyhedron* C, barvinok_options *options);

gen_fun *barvinok_enumerate_e_series(Polyhedron *P,

unsigned exist, unsigned nparam,

barvinok_options *options);

gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,

unsigned exist, unsigned nparam,

barvinok_options *options);

The functionbarvinok series orbarvinok series with options enumerates para-
metric polytopes in the form of a rational generating function. The polyhedronP is
assumed to have only revlex-positive rays.
The functionbarvinok enumerate e series computes a generating function for the
number of point in the parametric set defined byP with exist existentially quantified
variables using the projection theorem, as explained in subsection 5.24. The function
barvinok enumerate scarf series computes a generating function for the number
of point in the parametric set defined byPwith exist existentially quantified variables,
which is assumed to be 2. This function implements the technique of Scarf and Woods
(2006) using the neighborhood complex description of Scarf(1981). It is currently re-
stricted to problems with 3 or 4 constraints involving the existentially quantified vari-
ables.
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1.7 Auxiliary Functions

In this section we briefly mention some auxiliary functions available in thebarvinok
library.

void Polyhedron_Polarize(Polyhedron *P);

The functionPolyhedron Polarize polarizes its argument and is explained in Verdoolaege
(2005, Section 4.4.2).

int unimodular_complete(Matrix *M, int row);

The functionunimodular complete extends the firstrow rows ofM with an integral
basis of the orthogonal complement as explained in Section 5.7. Returns non-zero if
the resulting matrix is unimodular.

int DomainIncludes(Polyhedron *D1, Polyhedron *D2);

The functionDomainIncludes extends the functionPolyhedronIncludes provided
by PolyLib to unions of polyhedra. It checks whether every polyhedron in the union
D2 is included in some polyhedron ofD1.

Polyhedron *DomainConstraintSimplify(Polyhedron *P,

unsigned MaxRays);

The value returned byDomainConstraintSimplify is a pointer to a newly allocated
Polyhedron that contains the same integer points as its first argument but possibly has
simpler constraints. Each constraintg〈a, x〉 ≥ c is replaced by〈a, x〉 ≥

⌈
c
g

⌉

, whereg
is the greatest common divisor (gcd) of the coefficients in the original constraint. The
Polyhedron pointed to byP is destroyed.

Polyhedron* Polyhedron_Project(Polyhedron *P, int dim);

The functionPolyhedron Project projectsP onto its lastdim dimensions.

Matrix *left_inverse(Matrix *M, Matrix **Eq);

Theleft inverse function computes the left inverse ofM as explained in Section 5.6.

Matrix *Polyhedron_Reduced_Basis(Polyhedron *P,

struct barvinok_options *options);

Polyhedron Reduced Basis computes a generalized reduced basis ofP, which is as-
sumed to be a polytope, using the algorithm of Cook et al. (1993). See subsection 5.19
for more information. The basis vectors are stored in the rows of the matrix returned.

Vector *Polyhedron_Sample(Polyhedron *P,

struct barvinok_options *options);

Polyhedron Sample returns an integer point ofP or NULL if P contains no integer
points. The integer point is found using the algorithm of Cook et al. (1993) and uses
Polyhedron Reduced Basis to compute the reduced bases. See subsection 5.19 for
more information.
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1.8 bernstein Data Structures and Functions

Thebernstein library usedGiNaC data structures to represent the data it manipulates.
In particular, a polynomial is stored in aGiNaC::ex, a list of variable or parameter
names is stored in aGiNaC::exvector, while the parametric vertices or generators are
stored in aGiNaC::matrix, where the rows refer to the generators and the columns to
the coordinates of each generator.

namespace bernstein {

GiNaC::exvector constructParameterVector(

const char * const *param_names, unsigned nbParams);

GiNaC::exvector constructVariableVector(unsigned nbVariables,

const char *prefix);

}

The functionsconstructParameterVector andconstructVariableVector con-
struct a list of variable names either from a list ofchar *s or by suffixing prefix with
a number starting from 0. Such lists are needed for the functionsdomainVertices,
bernsteinExpansion andevalue bernstein coefficients.

namespace bernstein {

GiNaC::matrix domainVertices(Param_Polyhedron *PP, Param_Domain *Q,

const GiNaC::exvector& params);

}

The functiondomainVertices constructs a matrix representing the generators (in this
case vertices) of theParam Polyhedron PP for the Param Domain Q, to be used in
a call tobernsteinExpansion. The elements ofparams are used in the resulting
matrix to refer to the parameters.

namespace bernstein {

GiNaC::lst bernsteinExpansion(const GiNaC::matrix& vert,

const GiNaC::ex& poly,

const GiNaC::exvector& vars,

const GiNaC::exvector& params);

}

The functionbernsteinExpansion computes the Bernstein coefficients of the poly-
nomialpoly over the parametric polytope that is the convex hull of the rows invert.
The vectorsvars andparams identify the variables (i.e., the coordinates of the space
in which the parametric polytope lives) and the parameters,respectively.

namespace bernstein {

typedef std::pair< Polyhedron *, GiNaC::lst > guarded_lst;

struct piecewise_lst {

const GiNaC::exvector vars;
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std::vector<guarded_lst> list;

/* 0: just collect terms

* 1: remove obviously smaller terms (maximize)

* -1: remove obviously bigger terms (minimize)

*/

int sign;

piecewise_lst(const GiNaC::exvector& vars);

piecewise_lst& combine(const piecewise_lst& other);

void maximize();

void simplify_domains(Polyhedron *ctx, unsigned MaxRays);

GiNaC::numeric evaluate(const GiNaC::exvector& values);

void add(const GiNaC::ex& poly);

}

}

A piecewise list structure represents a list of (disjoint) polyhedral domains, each
with an associatedGiNaC::lst of polynomials. Thevars member contains the vari-
able names of the dimensions of the polyhedral domains.
piecewise lst::combine computes the common refinement of the polyhedral do-
mains inthis andother and associates to each of the resulting subdomains the union
of the sets of polynomials associated to the domains fromthis andother that contain
the subdomain. If thesigns of thepiecewise lists are not zero, then the (obvi-
ously) redundant elements of these sets are removed from theunion. The result is
stored inthis.
piecewise lst::maximize removes polynomials from domains that evaluate to a
value that is smaller than or equal to the value of some other polynomial associated to
the same domain for each point in the domain.
piecewise lst::evaluate “evaluates” thepiecewise list by looking for the do-
main (if any) that contains the point given byvalues and computing the maximal
value attained by any of the associated polynomials evaluated at that point.
piecewise lst::add adds the polynomialpoly to each of the polynomial associated
to each of the domains.
piecewise lst::simplify domains “simplifies” the domains by removing the con-
straints that are implied by the constraints inctx, basically by callingPolyLib’s
DomainSimplify. Note that you should only do this at the end of your computation. In
particular, you do not want to call this method before callingpiecewise lst::maximize,
since this method will then have less information on the domains to exploit.

namespace barvinok {

bernstein::piecewise_lst *evalue_bernstein_coefficients(

bernstein::piecewise_lst *pl_all, evalue *e,

Polyhedron *ctx, const GiNaC::exvector& params);

bernstein::piecewise_lst *evalue_bernstein_coefficients(

bernstein::piecewise_lst *pl_all, evalue *e,
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Polyhedron *ctx, const GiNaC::exvector& params,

barvinok_options *options);

}

The evalue bernstein coefficients function will compute the Bernstein coef-
ficients of the piecewise parametric polynomial stored in the evalue e. Theparams
vector specifies the names to be used for the parameters, while the contextPolyhedron
ctx specifies extra constraints on the parameters. The dimension ofctx needs to be the
same as the length ofparams. Theevalue e is assumed to be of typepartition and
each of the domains in thispartition is interpreted as a parametric polytope in the
given parameters. The procedure will compute the Bernsteincoefficients of the associ-
ated polynomial over each such parametric polytope. The resultingbernstein::piecewise lst
collects the Bernstein coefficients over all parametric polytopes ine. If pl_all is not
NULL then this list will be combined with the list computed by callingpiecewise lst::combine.
If bernstein optimize is set toBV BERNSTEIN MAX in options, then this combi-
nation will remove obviously redundant Bernstein coefficients with respect to upper
bound computation and similarly forBV BERNSTEIN MIN. The default (BV BERNSTEIN NONE)
is to only remove duplicate Bernstein coefficients.
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2 Applications included in thebarvinok distribution

This section describes some application programs providedby thebarvinok library,
available fromhttp://freshmeat.net/projects/barvinok/. For compilation
instructions we refer to theREADME file included in the distribution.

Common option to all programs:
--version -V print version
--help -? list available options

2.1 barvinok count

The programbarvinok count enumerates a non-parametric polytope. It takes one
polytope inPolyLib notation as input and prints the number of integer points in
the polytope. ThePolyLib notation corresponds to the internal representation of
Polyhedrons as explained in Section 1.1. The first line of the input contains the num-
ber of rows and the number of columns in theConstraint matrix. The rest of the
input is composed of the elements of the matrix. Recall that the number of columns
is two more than the number of variables, where the extra firstcolumns is one or zero
depending on whether the constraint is an inequality (≥ 0) or an equality (= 0). The
next columns contain the coefficients of the variables and the final column contains the
constant in the constraint. E.g., the setS = { s | s≥ 0∧ 2s≤ 13} from Verdoolaege
(2005, Example 38 on page 134) corresponds to the following input and output.

> cat S

2 3

1 1 0

1 -2 13

> ./barvinok_count < S

POLYHEDRON Dimension:1

Constraints:2 Equations:0 Rays:2 Lines:0

Constraints 2 3

Inequality: [ 1 0 ]

Inequality: [ -2 13 ]

Rays 2 3

Vertex: [ 0 ]/1

Vertex: [ 13 ]/2

7

Note that if you usePolyLib version 5.22.0 or newer then the output may look slightly
different as the computation of theRaysmay have been postponed to a later stage. The
programlatte2polylib.pl can be used to convert a polytope fromLattE (De Loera
et al. 2003) notation toPolyLib notation.

As an alternative to the constraints based input, the input polytope may also be spec-
ified by itsRay matrix. The first line of the input contains the single wordvertices.
The second line contains the number of rows and the number of columns in theRay
matrix. The rest of the input is composed of the elements of the matrix. Recall that
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the number of columns is two more than the number of variables, where the extra first
columns is one or zero depending on whether the ray is a line ornot. The next columns
contain the numerators of the coordinates and the final column contains the denomina-
tor of the vertex or 0 for a ray. E.g., the above set can also be described as

vertices

2 3

1 0 1

1 13 2

2.2 barvinok enumerate

The programbarvinok enumerate enumerates a parametric polytope as a piecewise
step-polynomial or rational generating function. It takestwo polytopes inPolyLib
notation as input, optionally followed by a list of parameter names. The two polytopes
refer to argumentsP and C of the corresponding function. (See Section 1.6.) The
following example was taken by Loechner (1999) from Loechner (1997, Chapter II.2).

> cat loechner

# Dimension of the matrix:

7 7

# Constraints:

# i j k P Q cte

1 1 0 0 0 0 0 # 0 <= i

1 -1 0 0 1 0 0 # i <= P

1 0 1 0 0 0 0 # 0 <= j

1 1 -1 0 0 0 0 # j <= i

1 0 0 1 0 0 0 # 0 <= k

1 1 -1 -1 0 0 0 # k <= i-j

0 1 1 1 0 -1 0 # Q = i + j + k

# 2 parameters, no constraints.

0 4

> ./barvinok_enumerate < loechner

POLYHEDRON Dimension:5

Constraints:6 Equations:1 Rays:5 Lines:0

Constraints 6 7

Equality: [ 1 1 1 0 -1 0 ]

Inequality: [ 0 1 1 1 -1 0 ]

Inequality: [ 0 1 0 0 0 0 ]

Inequality: [ 0 0 1 0 0 0 ]

Inequality: [ 0 -2 -2 0 1 0 ]

Inequality: [ 0 0 0 0 0 1 ]

Rays 5 7

Ray: [ 1 0 1 1 2 ]
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Ray: [ 1 1 0 1 2 ]

Vertex: [ 0 0 0 0 0 ]/1

Ray: [ 0 0 0 1 0 ]

Ray: [ 1 0 0 1 1 ]

POLYHEDRON Dimension:2

Constraints:1 Equations:0 Rays:3 Lines:2

Constraints 1 4

Inequality: [ 0 0 1 ]

Rays 3 4

Line: [ 1 0 ]

Line: [ 0 1 ]

Vertex: [ 0 0 ]/1

- P + Q >= 0

2P - Q >= 0

1 >= 0

( -1/2 * Pˆ2 + ( 1 * Q + 1/2 )

* P + ( -3/8 * Qˆ2 + ( -1/2 * {( 1/2 * Q + 0 )

} + 1/4 )

* Q + ( -5/4 * {( 1/2 * Q + 0 )

} + 1 )

)

)

Q >= 0

P - Q -1 >= 0

1 >= 0

( 1/8 * Qˆ2 + ( -1/2 * {( 1/2 * Q + 0 )

} + 3/4 )

* Q + ( -5/4 * {( 1/2 * Q + 0 )

} + 1 )

)

The output corresponds to





− 1
2P2 + PQ+ 1

2P− 3
8Q2 +

(
1
4 −

1
2

{
1
2Q

})

Q+ 1− 5
4

{
1
2Q

}

if P ≤ Q ≤ 2P
1
8Q2 +

(
3
4 −

1
2

{
1
2Q

})

− 5
4

{
1
2Q

}

if 0 ≤ Q ≤ P− 1.

The following is an example of Petr Lisonĕk.

> cat petr

4 6

1 -1 -1 -1 1 0

1 1 -1 0 0 0

1 0 1 -1 0 0

1 0 0 1 0 -1
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0 3

n

> ./barvinok_enumerate --series < petr

POLYHEDRON Dimension:4

Constraints:5 Equations:0 Rays:5 Lines:0

Constraints 5 6

Inequality: [ -1 -1 -1 1 0 ]

Inequality: [ 1 -1 0 0 0 ]

Inequality: [ 0 1 -1 0 0 ]

Inequality: [ 0 0 1 0 -1 ]

Inequality: [ 0 0 0 0 1 ]

Rays 5 6

Ray: [ 1 1 1 3 ]

Ray: [ 1 1 0 2 ]

Ray: [ 1 0 0 1 ]

Ray: [ 0 0 0 1 ]

Vertex: [ 1 1 1 3 ]/1

POLYHEDRON Dimension:1

Constraints:1 Equations:0 Rays:2 Lines:1

Constraints 1 3

Inequality: [ 0 1 ]

Rays 2 3

Line: [ 1 ]

Vertex: [ 0 ]/1

(nˆ3)/((1-n) * (1-n) * (1-nˆ2) * (1-nˆ3))

Options:
--floor -f convertfractionals tofloorings
--convert -c convertfractionals toperiodics
--series -s compute rational generating function instead of piecewise

step-polynomial
--explicit -e convert computed rational generating function to a piecewise

step-polynomial

2.3 barvinok enumerate e

The programbarvinok enumerate e enumerates a parametric projected set. It takes
a single polytope inPolyLib notation as input, followed by two lines indicating the
number or existential variables and the number of parameters and optionally followed
by a list of parameter names. The syntax for the line indicating the number of existen-
tial variables is the letterE followed by a space and the actual number. For indicating
the number of parameters, the letterP is used. The following example corresponds to
Verdoolaege (2005, Example 36 on page 129).

> cat projected

5 6
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# k i j p cst

1 0 1 0 0 -1

1 0 -1 0 0 8

1 0 0 1 0 -1

1 0 0 -1 1 0

0 -1 6 9 0 -7

E 2

P 1

> ./barvinok_enumerate_e <projected

POLYHEDRON Dimension:4

Constraints:5 Equations:1 Rays:4 Lines:0

Constraints 5 6

Equality: [ 1 -6 -9 0 7 ]

Inequality: [ 0 1 0 0 -1 ]

Inequality: [ 0 -1 0 0 8 ]

Inequality: [ 0 0 1 0 -1 ]

Inequality: [ 0 0 -1 1 0 ]

Rays 4 6

Vertex: [ 50 8 1 1 ]/1

Ray: [ 0 0 0 1 ]

Ray: [ 9 0 1 1 ]

Vertex: [ 8 1 1 1 ]/1

exist: 2, nparam: 1

P -3 >= 0

1 >= 0

( 3 * P + 10 )

P -1 >= 0

- P + 2 >= 0

( 8 * P + 0 )

Options:
--floor -f convertfractionals tofloorings
--convert -c convertfractionals toperiodics
--omega -o useOmega as a preprocessor
--pip -p call barvinok enumerate pip instead of

barvinok enumerate e

2.4 barvinok union

The programbarvinok union enumerates a union of parametric polytopes. It takes as
input the number of parametric polytopes in the union, the polytopes in combined data
and parameter space inPolyLib notation, the context in parameter space inPolyLib
notation and optionally a list of parameter names.
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Options:
--series -s compute rational generating function instead of piecewise

step-polynomial

2.5 barvinok ehrhart

The programbarvinok ehrhart computes the Ehrhart quasi-polynomial of a poly-
topeP, i.e., a quasi-polynomial inn that evaluates to the number of integer points in the
dilation of P by a factorn. The input is the same as that ofbarvinok count, except
that it may be followed by the variable name. The functionality is the same as running
barvinok enumerate on the cone overP placed atn = 1.

Options:
--floor -f convertfractionals tofloorings
--convert -c convertfractionals toperiodics
--series -s compute Ehrhart series instead of Ehrhart quasi-polynomial

2.6 polyhedron sample

The programpolyhedron sample takes a polytope inPolyLib notation and prints an
integer point in the polytope if there is one. The point is computed usingPolyhedron Sample.

2.7 polytope scan

The programpolytope scan takes a polytope inPolyLib notation and prints a list of
all integer points in the polytope. Unless the--direct options is given, the order is
based on the reduced basis computed withPolyhedron Reduced Basis.

Options:
--direct -d list the points in the lexicographical order

2.8 lexmin

The programlexmin implements an algorithm for performing PIP based on rational
generating functions and provides an alternative for the technique of Feautrier (1988),
which is based on cutting planes (Gomory 1963). The input is the same as that of the
example program frompiplib (Feautrier 2006), except that the value for the “big
parameter” needs to be−1, since there is no need for big parameters, and it does not
read any options from the input file.

2.9 barvinok summate

Given a piecewise quasi-polynomial, the programbarvinok summate computes the
sum of the piecewise quasi-polynomial evaluated in all (integer) values of a subset of
the variables. The result is an expression in the remaining variables.

The input format corresponds to theoutput format ofbarvinok enumerate and
barvinok enumerate e. That is, the program expects a list of guarded quasi-polynomials.
Each guarded quasi-polynomial consists of a domain and a quasi-polynomial, separated
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by an empty line. The domain is specified as a list of constraints, each on a separate
line, consisting of an affine expression in the variables followed by>= 0. Use the
--verbose option to check that your input was parsed correctly. The list of guarded
quasi-polynomials may be preceded by a line specifying the variables over which to
sum as#variables followed by a comma separated list of variable names.

For example

> cat square_p3

#variables x,y

x -2 >= 0

-3x + n + 9 >= 0

y -4 >= 0

-y +5 >= 0

x * y

> ./barvinok_summate < square_p3

n + 3 >= 0

- n -1 >= 0

18 n >= 0

1 >= 0

( 1/2 * nˆ2 + ( -3 * {( 1/3 * n + 0 )

} + 21/2 )

* n + ( 9/2 * {( 1/3 * n + 0 )

}ˆ2 + -63/2 * {( 1/3 * n + 0 )

} + 45 )

)

Options:
--variables comma separated list of variables over which to sum
--verbose -v print parsed piecewise quasi-polynomial
--summation specifies which summation method to use;box refers to the

method of Verdoolaege (2005, Section 4.5.4),bernoulli
refers to the method of subsection 5.13,euler refers to
the method of subsection 5.14, andlaurent refers to the
method of subsection 5.15.

2.10 barvinok bound

Given a piecewise quasi-polynomial, the programbarvinok bound computes an up-
per bound (or lower bound) for the values attained by the piecewise quasi-polynomial
over all (integer) values of a subset of the variables. The result is an expression in the
remaining variables.

The input format corresponds to theoutput format ofbarvinok enumerate and
barvinok enumerate e. That is, the program expects a list of guarded quasi-polynomials.
Each guarded quasi-polynomial consists of a domain and a quasi-polynomial, separated
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by an empty line. The domain is specified as a list of constraints, each on a separate
line, consisting of an affine expression in the variables followed by>= 0. Use the
--verbose option to check that your input was parsed correctly. The list of guarded
quasi-polynomials may be preceded by a line specifying the variables over which to
compute the upper bound as#variables followed by a comma separated list of vari-
able names.

> cat devos

#variables V

U + 2V + 3 >= 0

- U -2V >= 0

- U 10 >= 0

U >= 0

( {( 1/3 * U + ( 2/3 * V + 0 ) ) } )

> ./barvinok_bound < devos

(1*U >= 0 && -1*U + 10 >= 0) ? ((2.0/3.0)) : 0

Options:
--variables comma separated list of variables over which to compute a

bound
--verbose -v print parsed piecewise quasi-polynomial
--lower compute lower bound instead of upper bound

2.11 polytope minimize

The programpolytope minimize takes a polytope inPolyLib notation and a linear
objective function as input and prints an integer point in the polytope attaining the min-
imial value of the objective function. The objective function is specified as the length
of the vector (the number of variables) followed by the coefficients of the variables.
The point is computed as explained in subsubsection 5.20.2.

For example

> cat min_test

8 8

1 34 0 0 0 1 0 0

1 0 -82 -1 0 0 0 0

1 0 -82 0 0 0 -1 0

1 0 31 0 0 1 0 0

1 0 0 0 2 -3 0 0

1 0 0 0 0 -1 0 0

1 0 0 0 0 0 0 1

1 -34 4676 34 -34 21 34 34

6

34 -4676 -34 34 -21 -34

> ./polytope_minimize < min_test
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7

2 2 -164 -93 -62 -164 1

2.12 polyhedron integer hull

The programpolyhedron integer hull takes a polyhedron inPolyLib notation
and prints its integer hull. The integer hull is computed as explained in subsection 5.20.

2.13 polytope lattice width

The programpolytope lattice width computes the lattice width of a parametric
polytope. The input is the same as that ofbarvinok enumerate. The lattice width is
computed as explained in subsection 5.22.

Options:
--direction -d print the lattice width directions
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3 polymake clients

The barvinok distribution includes a couple ofpolymake (Gawrilow and Joswig
2000) clients in thepolymake subdir.

• lattice points <file>

Computes the propertyLATTICE POINTS of a polytope, the number of lattice
points in the polytope.

• h star vector <file>

Computes the propertyH STAR VECTOR of a lattice polytope, theh∗-vector of the
polytope (Stanley 1993).
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4 Omega interface

The barvinok distribution includes an interface toOmega (Kelly et al. 1996b)occ,
an extension ofoc (Kelly et al. 1996a). The extension adds the operations shown in
Figure 4.1. Here are some examples:

symbolic n, m;

P := { [i,j] : 0 <= i <= n and i <= j <= m };

card P;

P := {[i,j] : 0 <= i < 4*n-1 and 0 <= j < n and

n-1 <= i+j <= 3*n-2 };

C1 := {[i,j] : 0 <= i < 4*n-1 and 0 <= j < n and

2*n-1 <= i+j <= 4*n-2 and i <= 2*n-1 };

count_lexsmaller P within C1;

vertices C1;

bmax { [i] -> 2*n*i - n*n + 3*n - 1/2*i*i - 3/2*i-1 :

(exists j : 0 <= i < 4*n-1 and 0 <= j < n and

2*n-1 <= i+j <= 4*n-2 and i <= 2*n-1 ) };

sum { [i,j] -> i*j + n*i*i*j : i,j >= 0 and 5i + 27j <= n+m };

31



Name Syntax Explanation
Card card r Computes the number of integer points inr

and prints the result to standard output
Card card r using

parker

Computes the number of integer points in
r and prints the result to standard output
using the method of Parker and Chatterjee
(2004)

Ranking ranking r Computes the rank function ofr and prints
the result to standard output (Loechner
et al. 2002; Turjan et al. 2002)

Predecessors count lexsmaller
r within d

Computes a function from the elements of
d to the number of elements ofr that are
lexicographically smaller than that element
and prints the result to standard output.

Vertices vertices r Computes the parametric vertices ofr using
PolyLib (Loechner 1999).

Bernstein bmax f Computes the Bernstein coefficients of
the function f over its domain and re-
moves the redundant coefficients by calling
piecewise lst::maximize. The results
are printed to standard output. See the ex-
ample for how to specify the functionf .

Sum sum f Computes the sum of the given poly-
nomial f over its domain using
barvinok summate.

Figure 4.1: Extra relational operations ofocc
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5 Implementation details

5.1 An interior point of a polyhedron

We often need a point that lies in the interior of a polyhedron. The functioninner point
implements the following algorithm. Each polyhedronP can be written as the sum of
a polytopeP′ and a coneC (the recession cone or characteristic cone ofP). Adding a
positive multiple of the sum of the extremal rays ofC to the barycenter

1
N

∑

i

vi(p)

of P′, whereN is the number of vertices, results in a point in the interior of P.

5.2 The integer points in the fundamental parallelepiped of asim-
ple cone

This section is based on Barvinok (1992, Lemma 5.1) and De Loera and K̈oppe (2006).
In this section we will deal exclusively with simple cones, i.e.d-dimensional cones

with d extremal rays andd facets. Some of the facets of these cones may be open.
Since we will mostly be dealing with cones in their explicit representation, we will have
occasion to speak of “open rays”, by which we will mean that the facet not containing
the ray is open. (There is only one such facet because the coneis simple.)

Definition 5.1 (Fundamental parallelepiped) Let K = v+pos{ui } be a closed (shifted)
cone, then thefundamental parallelepipedΠ of K is

Π = v +






∑

i

αiui | 0 ≤ αi < 1





.

If some of the raysui of K are open, then the constraints on the corresponding coeffi-
cientαi are such that0 < αi ≤ 1.

Lemma 5.2 (Integer points in the fundamental parallelepiped of a simple cone)Let
K = v+pos{ ui } be a closed simple cone and let A be the matrix with the generatorsui

of K as rows. Furthermore let VAW−1 = S = diags be the Smith Normal Form (SNF)
of A. Then the integer points in the fundamental parallelepiped of K are given by

wT = vT +
{

(kTW− vT)A−1
}

A (5.3)

= vT +

d∑

i=1






〈

d∑

j=1

k jwT
j − vT ,u∗i 〉






uT
i ,

whereu∗i are the columns of A−1 and kj ∈ Z ranges over0 ≤ k j < sj .
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• •

Figure 5.4: The integer points in the fundamental parallelepiped ofK

Proof Since 0≤ {x} < 1, it is clear that each suchw lies inside the fundamental
parallelepiped. Furthermore,

wT = vT +
{

(kTW− vT)A−1
}

A

= vT +
(

(kTW− vT)A−1 −
⌊

(kTW− vT)A−1
⌋)

A

= kTW
︸︷︷︸

∈Z1×d

−
⌊

(kTW− vT)A−1
⌋

︸               ︷︷               ︸

∈Z1×d

A
︸︷︷︸

∈Zd×d

∈ Z1×d.

Finally, if two suchw are equal, i.e.,w1 = w2, then

0T = wT

1 − wT

2 = kT

1W− kT

2W+ pT A

=
(

kT

1 − kT

2
)

W+ pTV−1S W,

with p ∈ Zd, or k1 ≡ k2 mod s, i.e.,k1 = k2. Since detS = detA, we obtain all points
in the fundamental parallelepiped by taking allk ∈ Zd satisfying 0≤ k j < sj . �

If the coneK is not closed then the coefficients of the open rays should be in (0,1]
rather than in [0,1). In (5.3), we therefore need to replace the fractional part {x} =
x− ⌊x⌋ by {{x}} = x− ⌈x− 1⌉ for the open rays.

Example 5.5 Let K be the cone

K =

[

0
0

]

+ pos

{ [

2
1

]

,

[

0
−1

] }

,
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shown in Figure 5.4. Then

A =

[

2 1
0 −1

]

A−1 =

[

1/2 1/2
0 −1

]

and [

1 0
1 1

] [

2 1
0 −1

]

=

[

1 0
0 2

] [

2 1
1 0

]

.

We havedetA = detS = 2 andkT

1 =
[

0 0
]

andkT

2 =
[

0 1
]

. Therefore,

wT

1 =

{
[

0 0
]
[

2 1
1 0

] [

1/2 1/2
0 −1

]} [

2 1
0 −1

]

=
[

0 0
]

and

wT

2 =

{
[

0 1
]
[

2 1
1 0

] [

1/2 1/2
0 −1

]} [

2 1
0 −1

]

=
[

1/2 1/2
]
[

2 1
0 −1

]

=
[

1 0
]

.

5.3 Barvinok’s decomposition of simple cones in primal space

As described by De Loera et al. (2004), the first implementation of Barvinok’s count-
ing algorithm applied Barvinok’s decomposition (Barvinok1994) in the dual space.
Brion’s polarization trick (Brion 1988) then ensures that you do not need to worry
about lower-dimensional faces in the decomposition. Another way of avoiding the
lower-dimensional faces, in the primal space, is to perturbthe vertex of the cone such
that none of the lower-dimensional face encountered contain any integer points (K̈oppe
2007). In this section, we describe another technique that is based on allowing some of
the facets of the cone to be open.

The basic step in Barvinok’s decomposition is to replace ad-dimensional simple
coneK = pos{ ui }

d
i=1 ⊂ Q

d by a signed sum of (at most)d conesK j with a smaller
determinant (in absolute value). The cones are obtained by successively replacing each
generator ofK by an appropriately chosenw =

∑d
i=1 αiui , i.e.,

K j = pos
(

{ ui }
d
i=1 \ {u j } ∪ {w }

)

. (5.6)

To see that we can use theseK j to perform a decomposition, rearrange theui such that
for all 1 ≤ i ≤ k we haveαi < 0 and for allk + 1 ≤ i ≤ d′ we haveαi > 0, with d − d′

the number of zeroαi . We may assumek < d′; otherwise replacew ∈ B by −w ∈ B.
We have

w +
k∑

i=1

(−αi)ui =

d′∑

i=k+1

αiui

or
k∑

i=0

βiui =

d′∑

i=k+1

αiui , (5.7)
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Figure 5.11: Possible locations ofw with respect to the rays of a 3-dimensional cone.
The figure shows a section of the cones.

with u0 = w, β0 = 1 andβi = −αi > 0 for 1 ≤ i ≤ k. Any two u j andul on the same
side of the equality are on opposite sides of the linear hullH of the otheruis since there
exists a convex combination ofu j andul on this hyperplane. In particular, sinceα j and
αl have the same sign, we have

α j

α j + αl
u j +

αl

α j + αl
ul ∈ H for αiαl > 0. (5.8)

The corresponding conesK j andKl (with K0 = K) therefore intersect in a common
faceF ⊂ H. Let

K′ := pos
(

{ ui }
d
i=1 ∪ {w }

)

,

then anyx ∈ K′ lies both in some coneKi with 0 ≤ i ≤ k and in some coneKi with
k + 1 ≤ i ≤ d′. (Just subtract an appropriate multiple of Equation (5.7).) The cones
{Ki }

k
i=0 and{Ki }

d′
i=k+1 therefore both form a triangulation ofK′ and hence

[

K′
]

= [K] +
k∑

i=1

[Ki ] −
∑

j∈J1

[

F j

]

=

d′∑

i=k+1

[Ki ] −
∑

j∈J2

[

F j

]

(5.9)

or

[K] =
d′∑

i=1

εi [Ki ] +
∑

j

δ j

[

F j

]

, (5.10)

with εi = −1 for 1 ≤ i ≤ k, εi = 1 for k + 1 ≤ i ≤ d′, δ j ∈ {−1,1} and F j some
lower-dimensional faces. Figure 5.11 shows the possible configurations in the case of
a 3-dimensional cone.

As explained above there are several ways of avoiding the lower-dimensional faces
in (5.10). Here we will apply the following proposition.
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Proposition 5.12 (Köppe and Verdoolaege (2008))Let
∑

i∈I1

ǫi [Pi ] +
∑

i∈I2

δk[Pi ] = 0 (5.13)

be a (finite) linear identity of indicator functions of closed polyhedra Pi ⊆ Qd, where
the polyhedra Pi with i ∈ I1 are full-dimensional and those with i∈ I2 lower-dimensional.
Let each closed polyhedron be given as

Pi =
{

x | 〈b∗i, j , x〉 ≥ βi, j for j ∈ Ji

}

.

Let y ∈ Qd be a vector such that〈b∗i, j , y〉 , 0 for all i ∈ I1 ∪ I2, j ∈ Ji . For each i∈ I1,
we define the half-open polyhedron

P̃i =
{

x ∈ Qd | 〈b∗i, j , x〉 ≥ βi, j for j ∈ Ji with 〈b∗i, j , y〉 > 0,

〈b∗i, j , x〉 > βi, j for j ∈ Ji with 〈b∗i, j , y〉 < 0
}

.
(5.14)

Then ∑

i∈I1

ǫi [P̃i ] = 0. (5.15)

When applying this proposition to (5.10), we obtain

[

K̃
]

=

d′∑

i=1

εi
[

K̃i

]

, (5.16)

where we start out from a giveñK, which may beK itself, i.e., a fully closed cone,
or the result of a previous application of the proposition, either through a triangulation
(Section 5.4) or a previous decomposition. In either case, asuitabley is available,
either as an interior point of the cone or as the vector used inthe previous application
(which may require a slight perturbation if it happens to lieon one of the new facets
of the conesKi). We are, however, free to construct a newy on each application of
the proposition. In fact, we will not even construct such a vector explicitly, but rather
apply a set of rules that is equivalent to a valid choice ofy. Below, we will present
an “intuitive” motivation for these rules. For a more algebraic, shorter, and arguably
simpler motivation we refer to K̈oppe and Verdoolaege (2008).

The vectory has to satisfy〈b∗j , y〉 > 0 for normalsb∗j of closed facets and〈b∗j , y〉 < 0

for normalsb∗j of open facets of̃K. These constraints delineate a non-empty open cone

R from which y should be selected. For some of the new facets of the conesK̃ j , the
coneR will not be cut by the affine hull of the facet. The closedness of these facets
is therefore predetermined bỹK. For the other facets, a choice will have to be made.
To be able to make the choice based on local information and without computing an
explicit vectory, we use the following convention. We first assign an arbitrary total
order to the rays. If (the affine hull of) a facet separates the two rays not on the facet
ui andu j , i.e.,αiα j > 0 (5.8), then we choosey to lie on the side of the smallest ray,
according to the chosen order. That is,〈ñi j , y〉 > 0, for ñi j the normal of the facet
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pointing towards this smallest ray. Otherwise, i.e., ifαiα j < 0, the interior ofK will
lie on one side of the facet and then we choosey to lie on the other side. That is,
〈ñi j , y〉 > 0, for ñi j the normal of the facet pointing away from the coneK. Figure 5.17
shows some example decompositions with an explicitly marked y.

To see that there is ay satisfying the above constraints, we need to show thatR∩S
is non-empty, withS = {y | 〈ñik jk , y〉 > 0 for all k}. It will be easier to show this set
is non-empty when theui form an orthogonal basis. Applying a non-singular linear
transformationT does not change the decomposition ofw in terms of theui (i.e., theαi

remain unchanged), nor does this change any of the scalar products in the constraints
that defineR∩S (the normals are transformed by

(

T−1
)T

). Finding a vectory ∈ T(R∩S)

ensures thatT−1(y) ∈ R∩ S. Without loss of generality, we can therefore assume for
the purpose of showing thatR∩ S is non-empty that theui indeed form an orthogonal
basis.

In the orthogonal basis, we haveb∗i = ui and the corresponding inward normalNi is
eitherui or−ui . Furthermore, each normal of a facet ofS of the first type is of the form
ñik jk = akuik − bku jk, with ak,bk > 0 andik < jk, while for the second type each normal
is of the formñik jk = −akuik−bku jk, with ak,bk > 0. If ñik jk = akuik−bku jk is the normal
of a facet ofS then either (Nik ,N jk) = (uik ,u jk) or (Nik ,N jk) = (−uik ,−u jk). Otherwise,
the facet would not cutR. Similarly, if ñik jk = −akuik − bku jk is the normal of a facet of
S then either (Nik ,N jk) = (uik ,−u jk) or (Nik ,N jk) = (−uik ,u jk). Assume now thatR∩ S
is empty, then there existλk, µi ≥ 0 not all zero such that

∑

k λkñik jk +
∑

l µiNi = 0.
Assumeλk > 0 for some facet of the first type. IfN jk = −u jk, then−bk can only be
canceled by another facetk′ of the first type withjk = ik′ , but then alsoN jk′ = −u jk′ .
Since thejk are strictly increasing, this sequence has to stop with a strictly positive
coefficient for the largestu jk in this sequence. If, on the other hand,Nik = uik, thenak

can only be canceled by the normal of a facetk′ of the second kind withik = jk′ , but
thenNik′ = −uik′ and we return to the first case. Finally, ifλk > 0 only for normals of
facets of the second type, then eitherNik = −uik or N jk = −u jk and so the coefficient of
one of these basis vectors will be strictly negative. That is, the sum of the normals will
never be zero and the setR∩ S is non-empty.

For each rayu j of coneKi , i.e., the cone withui replaced byw, we now need to
determine whether the facet not containing this ray is closed or not. We denote the
(inward) normal of this cone byni j . Note that coneK j (if it appears in (5.9), i.e.,
α j , 0) has the same facet oppositeui and its normaln ji will be equal to eitherni j or
−ni j , depending on whether we are dealing with an “external” facet, i.e., a facet ofK′,
or an “internal” facet. If, on the other hand,α j = 0, thenni j = n0 j . If 〈ni j , y〉 > 0, then
the facet is closed. Otherwise it is open. It follows that thetwo (or more) occurrences
of external facets are either all open or all closed, while for internal facets, exactly one
is closed.

First consider the facet not containingu0 = w. If αi > 0, thenui andw are on the
same side of the facet and soni0 = n0i . Otherwise,ni0 = −ni0. Second, ifα j = 0, then
replacingui by w does not change the affine hull of the facet and soni j = n0 j . Now
consider the case thatαiα j < 0, i.e.,ui andu j are on the same side of the hyperplane
through the other rays. If we projectui , u j andw onto a plane orthogonal to the ridge
through the other rays, then the possible locations ofw with respect toui andu j are
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Figure 5.17: Examples of decompositions in primal space.
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Figure 5.18: Possible locations ofw with respect toui andu j , projected onto a plane
orthogonal to the other rays, whenαiα j < 0.
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Figure 5.19: Possible locations ofw with respect toui andu j , projected onto a plane
orthogonal to the other rays, whenαiα j > 0.

shown in Figure 5.18. If bothn0i andn0 j are closed theny lies in region 1 and therefore
ni j (as well asn ji ) is closed too. Similarly, if bothn0i andn0 j are open then so isni j .
If only one of the facets is closed, then, as explained above,we chooseni j to be open,
i.e., we takey to lie in region 3 or 5. Figure 5.19 shows the possible configurations for
the case thatαiα j > 0. If exactly one ofn0i andn0 j is closed, theny lies in region 3 or
region 5 and thereforeni j is closed iff n0 j is closed. Otherwise, as explained above, we
chooseni j to be closed ifi < j.

The algorithm is summarized in Algorithm 1, where we use the convention that in
coneKi , ui refers tou0 = w. Note that we do not need any of the rays or normals in
this code. The only information we need is the closedness of the facets in the original
cone and the signs of theαi .

5.4 Triangulation in primal space

As in the case for Barvinok’s decomposition (Section 5.3), we can transform a trian-
gulation of a (closed) cone into closed simple cones into a triangulation of half-open
simple cones that fully partitions the original cone, i.e.,such that the half-open sim-
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Algorithm 1 Determine whether the facet oppositeu j is closed inKi .

if α j = 0
closed[Ki ][u j ] := closed[K̃][u j ]

else if i = j
if α j > 0

closed[Ki ][u j ] := closed[K̃][u j ]
else

closed[Ki ][u j ] := ¬closed[K̃][u j ]
else ifαiα j > 0

if closed[K̃][ui ] = closed[K̃][u j ]
closed[Ki ][u j ] := i < j

else
closed[Ki ][u j ] := closed[K̃][u j ]

else
closed[Ki ][u j ] := closed[K̃][ui ] and closed[̃K][u j ]

ple cones do not intersect at their facets. Again, we apply Proposition 5.12 withy an
interior point of the cone (Section 5.1). Note that the interior point y may still inter-
sect some of the internal facets, so we may need to perturb it slightly. In practice, we
apply a lexicographical rule: for such (internal) facets, which always appear in pairs,
we close the one with a lexico-positive normal and open the one with a lexico-negative
normal.

5.5 Multivariate quasi-polynomials as lists of polynomials

There are many definitions for a (univariate) quasi-polynomial. Ehrhart (1977) uses a
definition based onperiodic numbers.

Definition 5.20 A rationalperiodic numberU(p) is a functionZ→ Q, such that there
exists aperiodq such that U(p) = U(p′) whenever p≡ p′ mod q.

Definition 5.21 A (univariate)quasi-polynomialf of degree d is a function

f (n) = cd(n) nd + · · · + c1(n) n+ c0,

where ci(n) are rational periodic numbers. I.e., it is a polynomial expression of degree
d with rational periodic numbers for coefficients. Theperiodof a quasi-polynomial is
the lcm of the periods of its coefficients.

Other authors (e.g., Stanley 1986) use the following definition of a quasi-polynomial.

Definition 5.22 A function f : Z → Q is a (univariate)quasi-polynomialof period q
if there exists a list of q polynomials gi ∈ Q[T] for 0 ≤ i < q such that

f (s) = gi(s) if s ≡ i mod q.

The functions gi are called theconstituents.

41



In our implementation, we use Definition 5.21, but whereas Ehrhart (1977) uses a
list of q rational numbers enclosed in square brackets to represent periodic numbers, our
periodic numbers are polynomial expressions in fractionalparts (Section 1.3). These
fractional parts naturally extend to multivariate quasi-polynomials. The bracketed (“ex-
plicit”) periodic numbers can be extended to multiple variables by nesting them (e.g.,
Loechner 1999).

Definition 5.22 could be extended in a similar way by having a constituent for each
residue modulo a vector periodq. However, as pointed out by Woods (2006), this may
not result in the minimum number of constituents. A vector period can be considered as
a lattice with orthogonal generators and the number of constituents is equal to the index
or determinant of that lattice. By considering more generallattices, we can potentially
reduce the number of constituents.

Definition 5.23 A function f : Zn → Q is a (multivariate)quasi-polynomialof period
L if there exists a list ofdetL polynomials gi ∈ Q[T1, . . . ,Tn] for i in the fundamental
parallelepiped of L such that

f (s) = gi(s) if s≡ i mod L.

To compute the period lattice from a fractional representation, we compute the
appropriate lattice for each fractional part and then take their intersection. Recall that
the argument of each fractional part is an affine expression in the parameters (〈a,p〉 +
c)/m, with a ∈ Zn andc,m ∈ Z. Such a fractional part is translation invariant over
any (integer) value ofp such that〈a,p〉 + mt = 0, for somet ∈ Z. Solving this
homogeneous equation over the integers (in our implementation, we usePolyLib’s
SolveDiophantine) gives the general solution

[

p
t

]

=

[

U1

U2

]

x for x ∈ Zn.

The matrixU1 ∈ Z
n×n then has the generators of the required lattice as columns. The

constituents are computed by plugging in each integer pointin the fundamental par-
allelepiped of the lattice. These points themselves are computed as explained in Sec-
tion 5.2. Note that for computing the constituents, it is sufficient to take any represen-
tative of the residue class. For example, we could takewT = kTW in the notations of
Lemma 5.2.

Example 5.24 (Woods (2006))Consider the parametric polytope

Ps,t = { x | 0 ≤ x ≤ (s+ t)/2 }.

The enumerator of Ps,t is





s
2 +

t
2 + 1 if





s

t



 ∈





−1 −2

1 0



Z
2 +





0

0





s
2 +

t
2 +

1
2 if





s

t



 ∈





−1 −2

1 0



Z
2 +





−1

0



.

The corresponding output ofbarvinok enumerate is
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s + t >= 0

1 >= 0

Lattice:

[[-1 1]

[-2 0]

]

[0 0]

( 1/2 * s + ( 1/2 * t + 1 )

)

[-1 0]

( 1/2 * s + ( 1/2 * t + 1/2 )

)

5.6 Left inverse of an affine embedding

We often map a polytope onto a lower dimensional space to remove possible equalities
in the polytope. These maps are typically represented by theinverse, mapping the co-
ordinatesx′ of the lower-dimensional space to the coordinatesx of (an affine subspace
of) the original space, i.e.,

[

x
1

]

=

[

T v
0T 1

] [

x′

1

]

,

where, as usual inPolyLib, we work with homogeneous coordinates. To obtain the
transformation that maps the coordinates of the original space to the coordinates of
the lower dimensional space, we need to compute the left inverse of the above affine
embedding, i.e., anA, b andd such that

d

[

x′

1

]

=

[

A b
0T d

] [

x
1

]

To compute this left inverse, we first compute the (right) Hermite Normal Form
(HNF) of T,

[

U1

U2

]

T =

[

H
0

]

.

The left inverse is then simply
[

dH−1U1 −dH−1v
0T d

]

.

We often also want a description of the affine subspace that is the range of the affine
embedding and this is given by

[

U2 −U2v
0T 1

] [

x
1

]

= 0.

This computation is implemented inleft inverse.
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5.7 Integral basis of the orthogonal complement of a linear sub-
space

Let M1 ∈ Z
m×n be a basis of a linear subspace. We first extendM1 with zero rows to

obtain a square matrixM′ and then compute the (left) HNF ofM′,
[

M1

0

]

=

[

H 0
0 0

] [

Q1

Q2

]

.

The rows ofQ2 span the orthogonal complement of the given subspace. SinceQ2 can
be extended to a unimodular matrix, these rows form an integral basis.

If the entries on the diagonal ofH are all 1 thenM1 can be extended to a unimodular
matrix, by concatenatingM1 andQ2. The resulting matrix is unimodular, since

[

M1

Q2

]

=

[

H 0
0 In−m,n−m

] [

Q1

Q2

]

.

This method for extending a matrix of which only a few lines are known to a uni-
modular matrix is more general than the method described by Bik (1996), which only
considers extending a matrix given by a single row.

5.8 Ensuring a polyhedron has only revlex-positive rays

The barvinok series with options function and all furthergen fun manipula-
tions assume that the effective parameter domain has only revlex-positive rays. When
used to computer rational generating functions, thebarvinok enumerate application
will therefore transform the effective parameter domain of a problem if it has revlex-
negative rays. It will then not compute the generating function

f (x) =
∑

p∈Zm

#(Pp ∩ Z
d) xp,

but
g(z) =

∑

p′∈Zn

#(PTp′+t ∩ Z
d) xp′

instead, wherep = Tp′ + t, with T ∈ Zm×n andt ∈ Zm, is an affine transformation that
maps the transformed parameter space back to the original parameter space.

First assume that the parameter domain does not contain any lines and that there are
no equalities in the description ofPp that force the values ofp for which Pp contains
integer points to lie on a non-standard lattice. Let the effective parameter domain be
given as{p | Ap + c ≥ 0 }, whereA ∈ Zs×d of row rankd; otherwise the effective
parameter domain would contain a line. LetH be the (left) HNF ofA, i.e.,

A = HQ,

with H lower-triangular with positive diagonal elements andQ unimodular. LetQ̃
be the matrix obtained fromQ by reversing its rows, and, similarly,̃H from H by
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reversing the columns. After performing the transformation p′ = Q̃p, i.e.,p = Q̃−1p′,
the transformed parameter domain is given by

{p′ | AQ̃−1p′ + c ≥ 0 }

or
{p′ | H̃p′ + c ≥ 0 }.

The first constraint of this domain ish11p′m + c1 ≥ 0. A ray with non-zero final co-
ordinate therefore has a positive final coordinate. Similarly, the second constraint is
h22p′m−1 + h21p′m + c2 ≥ 0. A ray with zeronth coordinate, but non-zeron− 1st coor-
dinate, will therefore have a positiven− 1st coordinate. Continuing this reasoning, we
see that all rays in the transformed domain are revlex-positive.

If the parameter domain does contains lines, but is not restricted to a non-standard
lattice, then the number of points in the parametric polytope is invariant over a trans-
lation along the lines. It is therefore sufficient to compute the number of points in the
orthogonal complement of the linear subspace spanned by thelines. That is, we apply
a prior transformation that maps a reduced parameter domainto this subspace,

p = L⊥p′ =
[

L L⊥
]
[

0
I

]

p′,

whereL has the lines as columns, andL⊥ an integral basis for the orthogonal comple-
ment (Section 5.7). Note that the inverse transformation

p′ = L−⊥p =
[

0 I
] [

L L⊥
]−1

p

has integral coefficients sinceL⊥ can be extended to a unimodular matrix.
If the parameter valuesp for which Pp contains integer points are restricted to a

non-standard lattice, we first replace the parameters by a different set of parameters
that lie on the standard lattice through “parameter compression”(Meister 2004),

p = Cp′.

The (left) inverse ofC can be computes as explained in Section 5.6, giving

p′ = C−Lp.

We have to be careful to only apply this transformation when both the equalities com-
puted in Section 5.6 are satisfied and some additional divisibility constraints. In par-
ticular if aT/d is a row ofC−L, with a ∈ Zn′ andd ∈ Z, the transformation can only be
applied to parameter valuesp such thatd divides〈a,p〉.

The complete transformation is given by

p = CL⊥Q̂−1p′

or
p′ = Q̂L−⊥C−Lp.
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5.9 Parametric Volume Computation

The volume of a (parametric) polytope can serve as an approximation for the number
of integer points in the polytope. We basically follow the description of Rabl (2006)
here, except that we focus on volume computation forlinearly parametrized polytopes,
which we exploit to determine the sign of the determinants wecompute, as explained
below.

Note first that the vertices of a linearly parametrized polytope are affine expres-
sions in the parameters that may be valid only in parts (chambers) of the parameter
domain. Since the volume computation is based on the (active) vertices, we perform
the computation in each chamber separately. Also note that since the vertices are affine
expressions, it is easy to check whether they belong to a facet.

The volume of ad-simplex, i.e., ad-dimensional polytope withd + 1 vertices, is
relatively easy to compute. In particular, ifvi(p), for 0 ≤ i ≤ d, are the (parametric)
vertices of the simplexP then

vol P =
1
d!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det





v11(p) − v01(p) v12(p) − v02(p) . . . v1d(p) − v0d(p)
v21(p) − v01(p) v22(p) − v02(p) . . . v2d(p) − v0d(p)

...
...

. . .
...

vd1(p) − v01(p) vd2(p) − v02(p) . . . vdd(p) − v0d(p)





∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (5.25)

If P is not a simplex, i.e.,N > d + 1, with N the number of vertices ofP, then the
standard way of computing the volume ofP is to first triangulate P, i.e., subdivideP
into simplices, and then to compute and sum the volumes of theresulting simplices.
One way of computing a triangulation is to compute the barycenter

1
N

∑

i

vi(p)

of P and to perform a subdivision by computing the convex hulls ofthe barycenter with
each of the facets ofP. If a given facet ofP is itself a simplex, then this convex hull
is also a simplex. Otherwise the facet is further subdivided. This recursive process
terminates as every 1-dimensional polytope is a simplex.

The triangulation described above is known as the boundary triangulation (B̈ueler
et al. 2000) and is used by Rabl (2006) in his implementation.The Cohen-Hickey trian-
gulation (Cohen and Hickey 1979; Büeler et al. 2000) is a much more efficient variation
and uses one of the vertices instead of the barycenter. The facets incident on the ver-
tex do not have to be considered in this case because the resulting subpolytopes would
have zero volume. Another possibility is to use a “lifting” triangulation (Lee 1991;
De Loera 1995). In this triangulation, each vertex is assigned a (random) “height” in
an extra dimension. The projection of the “lower envelope” of the resulting polytope
onto the original space results in a subdivision, which is a triangulation with very high
probability.

A complication with the lifting triangulation is that the constraint system of the
lifted polytope will in general not be linearly parameterized, even if the original poly-
tope is. It is, however, sufficient to perform the triangulation for a particular value ofthe
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parameters inside the chamber since the parametric polytope has the same combinato-
rial structure throughout the chamber. The triangulation obtained for the instantiated
vertices can then be carried over to the corresponding parametric vertices. We only
need to be careful to select a value for the parameters that does not lie on any facet
of the chambers. On these chambers, some of the vertices may coincide. For linearly
parametrized polytopes, it is easy to find a parameter point in the interior of a chamber,
as explained in Section 5.1. Note that this point need not be integer.

A direct application of the above algorithm, using any of thetriangulations, would
yield for each chamber a volume expressed as the sum of the absolute values of poly-
nomials in the parameters. To remove the absolute value, we plug in a particular value
of the parameters (not necessarily integer) belonging to the given chamber for which
we know that the volume is non-zero. Again, it is sufficient to take any point in the
interior of the chamber. The sign of the resulting value thendetermines the sign of the
whole polynomial since polynomials are continuous functions and will not change sign
without passing through zero.

5.10 Maclaurin series division

If P(t) andQ(t) are two Maclaurin series

P(t) = a0 + a1t + a2t2 + · · ·

Q(t) = b0 + b1t + b2t2 + · · · ,

then, as outlined by Henrici (1974, 241–247), we can computethe coefficientscl in

P(t)
Q(t)

=: c0 + c1t + c2t2 + · · ·

by applying the recurrence relation

cl =
1
b0




al −

l∑

i=1

bicl−i




.

To avoid dealing with denominators, we can also computedl = bl+1
0 cl instead as

dl = bl
0al −

l∑

i=1

bi−1
0 bicl−i .

The coefficientscl can then be directly read off as

cl =
dl

bl+1
0

.

5.11 Specialization through exponential substitution

This section draws heavily from De Loera and Köppe (2006).
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We define a “short”rational generating functionto be a function of the form

f (x) =
∑

i∈I

αi

∑r
k=1 xwik

∏ki

j=1

(

1− xbi j
) , (5.26)

with x ∈ Cd, αi ∈ Q, wik ∈ Z
d andbi j ∈ Z

d \ {0}.
After computing the rational generating function (5.26) ofa polytope (withki = d

for all i), the number of lattice points in the polytope can be obtained by evaluating
f (1). Since1 is a pole of each term, we need to compute the constant term in the
Laurent expansions of each term in (5.26) about1. Since it is easier to work with
univariate series, a substitution is usually applied, either a polynomial substitution

x = (1+ t)λ,

as implemented inLattE (De Loera et al. 2003), or an exponential substitution (see,
e.g., Barvinok and Pommersheim 1999),

x = etλ,

as implemented inLattE macchiato (Köppe 2006). In each case,λ ∈ Zd is a vector
that is not orthogonal to any of thebi j . Both substitutions also transform the problem
of computing the constant term in the Laurent expansions about x = 1 to that of com-
puting the constant term in the Laurent expansions aboutt = 0. Here, we discuss the
exponential substitution.

Consider now one of the terms in (5.26),

g(t) =

∑r
k=1 eakt

∏d
j=1 (1− ec j t)

,

with ak = 〈wik, λ〉 andc j = 〈bi j , λ〉. We rewrite this equation as

g(t) = (−1)d
∑r

k=1 eakt

td
∏d

j=1 c j

d∏

j=1

−c j t

1− ec j t
.

The second factor is analytic in a neighborhood of the origint = c1 = · · · = cd = 0 and
therefore has a Taylor series expansion

d∏

j=1

−c j t

1− ec j t
=

∞∑

m=0

tdm(−c1, . . . ,−cd)tm, (5.27)

where tdm is a homogeneous polynomial of degreem called them-th Todd polyno-
mial (Barvinok and Pommersheim 1999). Also expanding the numerator in the first
factor, we find

g(t) =
(−1)d

td
∏d

j=1 c j





∞∑

n=0

∑r
k=1 an

k

n!
tn








∞∑

m=0

tdm(−c1, . . . ,−cd)tm


 ,
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with constant term

(−1)d

td
∏d

j=1 c j





d∑

i=0

∑r
k=1 ai

k

i!
tdd−i(−c1, . . . ,−cd)




td =

(−1)d
∏d

j=1 c j

d∑

i=0

∑r
k=1 ai

k

i!
tdd−i(−c1, . . . ,−cd). (5.28)

To compute the firstd+1 terms in the Taylor series (5.27), we write down the truncated
Taylor series

et − 1
t
≡

d∑

i=0

1
(i + 1)!

ti ≡
1

(d + 1)!

d∑

i=0

(d + 1)!
(i + 1)!

ti mod td+1,

where we have
1

(d + 1)!

d∑

i=0

(d + 1)!
(i + 1)!

ti ∈
1

(d + 1)!
Z[t].

Computing the reciprocal as explained in Section 5.10, we find

−t
1− et

=
t

et − 1
=

1
et−1

t

≡ (d + 1)!
1

∑d
i=0

(d+1)!
(i+1)! ti

≕

d∑

i=0

bi t
i . (5.29)

Note that the constant term of the denominator is 1/(d + 1)!. The denominators of the
quotient are therefore ((d+1)!)i+1/(d+1)!. Also note that thebi are independent of the
generating function and can be computed in advance. An alternative way of computing
thebi is to note that

t
et − 1

=

∞∑

i=0

Bi
ti

i!
,

with Bi = i! bi the Bernoulli numbers, which can be computed using the recurrence (5.34)
(see Section 5.12).

Substitutingt by c j t in (5.29), we have

−c j t

1− ec j t
=

d∑

i=0

bic
i
j t

i .

Multiplication of these truncated Taylor series for eachc j results in the firstd+1 terms
of (5.27),

d∑

m=0

tdm(−c1, . . . ,−cd)tm≕
d∑

m=0

βm

((d + 1)!)m
tm,

from which it is easy to compute the constant term (5.28). Note that this convolution
can also be computed without the use of rational coefficients,

(−1)d
∏d

j=1 c j

d∑

i=0

αi

i!
βd−i

((d + 1)!)d−i
=

(−1)d

((d + 1)!)d
∏d

j=1 c j

d∑

i=0

(

((d + 1)!)i

i!
αi

)

βd−i ,

with αi =
∑r

k=1 ai
k.

49



Example 5.30 Consider the rational generating function

f (T; x) =
x2

1

(1− x−1
1 )(1− x−1

1 x2)
+

x2
2

(1− x−1
2 )(1− x1x−1

2 )
+

1
(1− x1)(1− x2)

from Verdoolaege (2005, Example 39). Since this is a 2-dimensional problem, we first
compute the first 3 Todd polynomials (evaluated at−1),

et − 1
t
≡ 1+

1
2

t +
1
6

t2 =
1
6

[

6 3 1
]

and
−t

1− et
=

t
et − 1

≡

[
1
1
−3
6

3
36

]

,

where we represent each truncated power series by a vector ofits coefficients. The
vectorλ = (1,−1) is not orthogonal to any of the rays, so we can use the substitution
x = e(1,−1)t and obtain

e2t

(1− e−t)(1− e−2t)
+

e−2t

(1− et)(1− e2t)
+

1
(1− et)(1− e−t)

.

We have

t
1− e−t

=

[
1
1

3
6

3
36

]

2t
1− e−2t

=

[
1
1

6
6

12
36

]

−t
1− et

=

[
1
1
−3
6

3
36

]

−2t
1− e2t

=

[
1
1
−6
6

12
36

]

.

The first term in the rational generating function evaluatesto

1
−1 · −2

[
1
1

2
1

4
2

]

∗

([
1
1

3
6

3
36

] [
1
1

6
6

12
36

])

=
1
2

[
1
1

2
1

4
2

]

∗

[
1
1

9
6

33
36

]

=
1
72

[

1 2 · 6 4 · 18
]

∗
[

1 9 33
]

=
213
72
=

71
24
.

Due to symmetry, the second term evaluates to the same value,while for the third term
we find

1
−1 · 1 · 36

[

1 0 · 6 0 · 18
]

∗
[

1 0 −3
]

=
−3
−36

=
1
12
.

The sum is
71
24
+

71
24
+

1
12
= 6.
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Note that the run-time complexities of polynomial and exponential substitution are
basically the same. The experiments of Köppe (2007) are somewhat misleading in this
respect since the polynomial substitution (unlike the exponential substitution) had not
been optimized to take full advantage of the stopped Barvinok decomposition. For
comparison, Table 1 shows running times for the same experiments of that paper, but
using barvinok versionbarvinok-0.23-47-gaa9024e on an Athlon MP 1500+ with
512MiB internal memory. This machine appears to be slightlyslower than the machine
used in the experiments of Köppe (2007) as computinghickerson-14 using the dual
decomposition with polynomial substitution and maximal index 1 took 2768 seconds
on this machine usingLattE macchiato. At this stage, it is not clear yet why the
number of cones in the dual decomposition ofhickerson-13 differs from that of
LattE (De Loera et al. 2003) andLattE macchiato (Köppe 2006). We conclude
from Table 1 that (our implementation of) the exponential substitution is always slightly
faster than (our implementation of) the polynomial substitution. The optimal maximal
index for these examples is about 500, which agrees with the experiments of K̈oppe
(2007).

5.12 Approximate Enumeration using Nested Sums

If P ∈ Qd is a polyhedron andp(x) ∈ Q[x] is a polynomial and we want to sum
p(x) over all integer values of (a subset of) the variablesx, then we can do this incre-
mentally by taking a variablex1 with lower boundL(x̂) and upper boundU(x̂), with
x̂ = (x2, . . . , xd), and computing

Q(x̂) =
U(x̂)∑

x1=L(x̂)

p(x). (5.31)

Since P is a polytope, the lower bound is a maximum of affine expressions in the
remaining variables, while the upper bound is a minimum of such expressions. If the
coefficients in these expressions are all integer, then we can computeQ(x̂) exactly as a
piecewise polynomial using formulas for sums of powers, as proposed by, e.g., Tawbi
(1994), Sakellariou (1997), Van Engelen et al. (2006). If some of the coefficients are
not integer, we can apply the same formulas to obtain an approximation, which can is
some cases be shown to be an overapproximation (Van Engelen et al. 2006). Note that
if we take the initial polynomial to be the constant 1, then this gives us a method for
computing an approximation of the number of integer points in a (parametric) polytope.

The first step is to compute the chamber decomposition ofP when viewed as a 1-
dimensional parametric polytope. That is, we need to partition the projection ofP onto
the remaining variables into polyhedral cells such that in each cell, both the upper and
the lower bound are described by a single affine expression. Basically, for each pair of
lower and upper bound, we compute the cell where the chosen lower bound is (strictly)
smaller than all other lower bounds and similarly for the upper bound.

For any given pair of lower and upper bound (l(x̂),u(x̂)), the formula (5.31) is
computed for each monomial ofp(x) separately. For the constant termα0, we have

51



Dual decomposition Primal decomposition
Time (s) Time (s)

Max. index Cones Poly Exp Cones Poly Exp
hickerson-12

1 11625 9.24 8.90 7929 4.80 4.55
10 4251 4.32 4.19 803 0.66 0.62

100 980 1.42 1.35 84 0.13 0.12
200 550 1.00 0.92 76 0.12 0.12
300 474 0.93 0.86 58 0.12 0.10
500 410 0.90 0.83 42 0.10 0.10

1000 130 0.42 0.38 22 0.10 0.07
2000 10 0.10 0.10 22 0.10 0.09
5000 7 0.12 0.11 7 0.12 0.10

hickerson-13

1 494836 489 463 483507 339 315
10 296151 325 309 55643 51 48

100 158929 203 192 9158 11 10
200 138296 184 173 6150 9 8
300 110438 168 157 4674 8 7
500 102403 163 151 3381 8 7

1000 83421 163 149 2490 8 7
2000 77055 170 153 1857 10 8
5000 57265 246 211 1488 13 11

10000 50963 319 269 1011 26 21
hickerson-14

1 1682743 2171 2064 552065 508 475
10 1027619 1453 1385 49632 62 59

100 455474 768 730 8470 14 13
200 406491 699 661 5554 11 10
300 328340 627 590 4332 11 9
500 303566 605 565 3464 11 9

1000 232626 581 532 2384 12 10
2000 195368 607 545 1792 14 12
5000 147496 785 682 1276 19 16

10000 128372 966 824 956 29 23

Table 1: Timing results of dual and primal decomposition with polynomial or expo-
nential substitution on the Hickerson examples
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u(x̂)∑

x1=l(x̂)

α0(x̂) = α0(x̂) (u(x̂) − l(x̂) + 1) . (5.32)

For the higher degree monomials, we use the formula

m−1∑

k=0

kn =
1

n+ 1

n∑

k=0

(

n+ 1
k

)

Bkm
n+1−k =: Sn(m), (5.33)

with Bi the Bernoulli numbers, which can be computed using the recurrence

m∑

j=0

(

m+ 1
j

)

Bj = 0 B0 = 1. (5.34)

Note that (5.33) is also valid ifm = 0, i.e.,Sn(0) = 0, a fact that can be easily shown
using Newton series (Van Engelen et al. 2006).

Since we can only directly apply the summation formula when the lower bound is
zero (or one), we need to consider several cases.

1. l(x̂) ≥ 1

u(x̂)∑

x1=l(x̂)

αn(x̂) xn
1 = αn(x̂)





u(x̂)∑

x1=1

xn
1 −

l(x̂)−1∑

x1=1

xn
1





= αn(x̂) (Sn(u(x̂) + 1)− Sn(l(x̂)))

2. u(x̂) ≤ −1

u(x̂)∑

x1=l(x̂)

αn(x̂) xn
1 = αn(x̂)(−1)n

−l(x̂)∑

x1=−u(x̂)

αn(x̂) xn
1

= αn(x̂)(−1)n (Sn(−l(x̂) + 1)− Sn(−u(x̂)))

3. l(x̂) ≤ 0 andu(x̂) ≥ 0

u(x̂)∑

x1=l(x̂)

αn(x̂) xn
1 = αn(x̂)





u(x̂)∑

x1=0

xn
1 + (−1)n

−l(x̂)∑

x1=1

xn
1





= αn(x̂) (Sn(u(x̂) + 1)+ (−1)nSn(−l(x̂) + 1))

If the coefficients in the lower and upper bound are all integer, then the above 3
cases partition (the integer points in) the projection ofP onto the remaining variables.
However, if some of the coefficients are rational, then the lower and upper bound can
lie in the open interval (0,1) for some values of̂x. We may therefore also want to
consider the following two cases.
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4. 0< l(x̂) < 1

u(x̂)∑

x1=l(x̂)

αn(x̂) xn
1 = αn(x̂)Sn(u(x̂) + 1)

5. 0< −u(x̂) < 1

u(x̂)∑

x1=l(x̂)

αn(x̂) xn
1 = αn(x̂)(−1)nSn(−l(x̂) + 1)

Note that we may add the constraintu ≥ 1 to case 4 and the constraintl ≤ −1 to case 5,
since the correct value for these two cases would be zero if these extra constraints do
not hold.

An alternative to adding the above two cases would be to simply ignore them, i.e.,
assume a value of 0. Another alternative would be to reduce case 3 to

l(x̂) ≤ −1 and u(x̂) ≥ 1,

while extending cases 4 and 5 to

−1 < l(x̂) < 1 and u ≥ 1

and
−1 < u(x̂) < 1 and l ≤ −1,

respectively, with the remaining cases (−1 < l ≤ u < 1) having value 0. There does
not appear to be a consistently better choice here, as each ofthese three approaches
seems to yield better results on some examples. The last approach has the additional
drawback that we would also have to deal with 5 cases, even if the bounds are integers.

If at least one of the lower or upper bound is an integer affine expression, then we
can reduce the 3 (or 5) cases to a single case (case 3) by an affine substitution that
ensure that the new (lower or upper) bound is zero. In particular, if l(x̂) is an integer
affine expression, then we replacex by x′ + l(x̂) and similarly for an upper bound.

5.13 Exact Enumeration using Nested Sums

The exact enumeration using nested sums proceeds in much thesame way as the ap-
proximate enumeration from subsection 5.12, with the notable exception that we need
to take the (greatest or least) integer part of any fractional bounds that may occur. This
has several consequences, discussed below.

Since we will introduce floors during the recursive application of the procedure, we
may as well allow the weightp(x) in (5.31) to be a (piecewise) quasipolynomial.

For the constant term, (5.32) becomes

u(x̂)∑

x1=l(x̂)

α0(x̂) = α0(x̂) (⌊u(x̂)⌋ − ⌈l(x̂)⌉ + 1) .
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Since we force the lower and upper bounds to be integers, cases 4 and 5 do not
occur, while the conditions for cases 1 and 2 can be simplifiedto

l(x̂) > 0

and
u(x̂) < 0,

respectively.
If the variablex appears in any floor expression, either because such an expression

was present in the original weight function or because it wasintroduced when another
variable with an affine bound inx was summed, then the domain has to be “splintered”
into D parts, whereD is the least common multiple of the denominators of the coeffi-
cients ofx in any of the integer parts. In particular, the domain is split into x = Dy+ i
for eachi in [0,D − 1]. SinceD is proportional to the coefficients in the constraints,
it is exponential in the input size. This splintering will therefore introduce exponential
behavior, even if the dimension is fixed.

Splintering is clearly the most expensive step in the algorithm, so we want to avoid
this step as much as possible. Pugh (1994) already noted thatsummation should pro-
ceed over variables with integer bounds first. This can be extended to choosing a vari-
able with the smallest coefficient in absolute value. In this way, we can avoid splinter-
ing on the largest denominator.

Sakellariou (1996) claims that splintering can be avoided altogether. In particular,
Sakellariou (1996, Lemma 3.2) shows that

a∑

x=0

xm (x modb)n ,

with a andb integers, is equal to






a∑

x=0

xm+n if a < b

⌊a/b⌋−1∑

i=0

b−1∑

x=0

(x+ ib)mxn +

a modb∑

x=0

(x+ b⌊a/b⌋)mxn if a ≥ b,

(5.35)

effectively avoiding splintering if a given monomial containsa single integer part ex-
pression with argument of the formx/b. An argument of the form (x − c(x̂))/b can
be handled through a variable substitution. If the argumentis of the formcx/b, with
c , 1, then Sakellariou (1996, (3.27)) proposes to rewrite the monomial as

a∑

x=0

(cx modb)n =

a∑

x=0

cx∑

y=cx

(y modb)n

=

a∑

x=0





cx∑

y=0

(y modb)n −

cx−1∑

y=0

(y modb)n




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and applying (5.35). However, such an application results in an expression containing

cx modb∑

y=0

yn,

which in turn leads to a polynomial of degreen + 1 in (cx modb), i.e., of degree
one higher than the original expression. Furthermore, if the bound onx is rational
thena itself contains a floor, which, on application of (5.35), results in a nested floor
expression, blocking the application of the same rule for the next variable. Finally,
the case where a monomial contains multiple floor expressions, either occurring in the
input quasi-polynomial or introduced by different variables having a rational bound
with a non-zero coefficient in the same variable, is not handled. Also note that if we
disallow nested floor expressions, then this rule will rarely be applicable since we try
to eliminate variables with integer bounds first.

5.14 Summation using local Euler-Maclaurin formula

In this section we provide some implementation details on using local Euler-Maclaurin
formula to compute the sum of a piecewise polynomial evaluated in all integer points
of a two-dimensional parametric polytope. For the theory behind these formula and a
discussion of the original implementation (for non-parametric simplices), we refer to
Berline and Vergne (2006).

In particular, consider a parametric piecewise polynomialin n parameters andm
variablesc : Zn→ Zm→ Q : p 7→ c(p), with c(p) : Zm→ Q : x 7→ c(p)(x) and

cp(x) =






c1(p)(x) if x ∈ D1(p)
...

cr (p)(x) if x ∈ Dr (p),

with the ci polynomials,ci ∈ (Q[p])[x], and theDi disjoint linearly parametric poly-
topes. We want to compute

g(p) =
∑

x∈Zm

c(p)(x).

5.14.1 Reduction to the summation of a parametric polynomial over a paramet-
ric polytope with a fixed combinatorial structure

Since theDi are disjoint, we can consider each (ci ,Di)-pair individually and compute

g(p) =
r∑

i=1

gi(p) =
r∑

i=1

∑

x∈Dr (p)∩Zm

cr (p)(x).

The second step is to compute the chamber decomposition (Verdoolaege 2005, Section
4.2.3) of each parametric polytopeDi . The result is a subdivision of the parameter
space into chambersCi j such thatDi has a fixed combinatorial structure, in particular a
fixed set of parametric vertices, on (the interior of) eachCi j . Applying Theorem 5.12,

56



this subdivision can be transformed into a partition{ C̃i j } by making some of the facets
of the chambers open (K̈oppe and Verdoolaege 2008, Section 3.2). Since we are only
interested in integer parameter values, any of the resulting open facets〈a,p〉 + c > 0,
with a ∈ Zn andc ∈ Z, can then be replaced by〈a,p〉 + c− 1 ≥ 0. Again, we have

gi(p) =
∑

j

gi j (p) =
∑

j

∑

x∈Ci j (p)∩Zm

cr (p)(x).

After this reduction, the technique of Berline and Vergne (2006) can be applied
practically verbatim to the parametric polytope with a fixedcombinatorial structure.
In principle, we could also handle piecewise quasi-polynomials using the technique of
Verdoolaege (2005, Section 4.5.4), except that we only needto create an extra variable
for each distinct floor expression in a monomial, rather thanfor each occurrence of
a floor expression in a monomial. However, since we currentlyonly support two-
dimensional polytopes, this reduction has not been implemented yet.

5.14.2 Summation over a one-dimensional parametric polytope

The basis for the summation technique is the local Euler-Maclaurin formula (Berline
and Vergne 2006, Theorem 26)

∑

x∈P(p)∩Λ

h(p)(x) =
∑

F(p)∈F (P(p))

∫

F(p)
DP(p),F(p) · h(p), (5.36)

whereP(p) is a parametric polytope,Λ is a lattice,F (P(p)) are the faces ofP(p),
DP(p),F(p) is a specific differential operator associated to the face of a polytope. The
Lebesgue measure used in the integral is such that the integral of the indicator function
of a lattice element of the latticeΛ ∩ (aff(F(p)) − F(p)) is 1, i.e., the intersection of
Λ with the linear subspace parallel to the affine hull of the faceF(p). Note that the
original theorem is formulated for a non-parametric polytope and a non-parametric
polynomial. However, as we will see, in each of the steps in the computation, the
parameters can be treated as symbolic constants without affecting the validity of the
formula, see also Berline and Vergne (2006, Section 6).

The differential operatorDP(p),F(p) is obtained by plugging in the vectorD = (D1, . . . ,Dm)
of first order differential operators, i.e.,Dk is the first order differential operator in the
kth variable, in the functionµP(p),F(p). This function is determined by thetransverse
coneof the polyhedronP(p) along its faceF(p), which is the supporting cone ofP(p)
alongF(p) projected into the linear subspace orthogonal toF(p). The lattice associated
to this space is the projection ofΛ into this space.

In particular, for a zero-dimensional affine cone in the zero-dimensional space, we
haveµ = 1 (Berline and Vergne 2006, Proposition 12), while for a one-dimensional
affine coneK = (−t+R+)r in the one-dimensional space, wherer is a primitive integer
vector andt ∈ [0,1), we have (Berline and Vergne 2006, (13))

µ(K)(ξ) =
ety

1− ey
+

1
y
= −

∞∑

n=0

b(n+ 1, t)
(n+ 1)!

yn, (5.37)
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with y = 〈ξ, r〉 andb(n, t) the Bernoulli polynomials defined by the generating series

Todd(t, y) =
etyy

ey − 1
=

∞∑

n=0

b(n, t)
n!

yn. (5.38)

The constant terms of these Bernoulli polynomials are the Bernoulli numbers.
Applying (5.36) to a one-dimensional parametric polytopeP(p) = [v1(p), v2(p)],

we find
∑

x∈P(p)∩Z

h(p)(x) =
∫

P(p)
DP(p),P(p) · h(p)

+

∫

v1(p)
DP(p),v1(p) · h(p)

+

∫

v2(p)
DP(p),v2(p) · h(p).

The transverse cone of a polytope along the whole polytope isa zero-dimensional cone
in a zero-dimensional space and soDP(p),P(p) = µP(p),P(p)(D) = 1. The transverse cone
along v1(p) is v1(p) + R+ and soDP(p),v1(p) = µ(v1(p) + R+)(D) as in (5.37), with
y = 〈D,1〉 = D and t = ⌈v1(p)⌉ − v1(p) = {−v1(p)}. Similarly we findDP(p),v2(p) =

µ(v2(p)−R+)(D) as in (5.37), withy = 〈D,−1〉 = −D andt = v2(p)−⌊v2(p)⌋ = {v2(p)}.
Summarizing, we find

∑

x∈P(p)∩Z

h(p)(x) =
∫ v2(p)

v1(p)
h(p)(t) dt

−

∞∑

n=0

b(n+ 1, {−v1(p)})
(n+ 1)!

(Dnh(p))(v1(p))

−

∞∑

n=0

(−1)n
b(n+ 1, {v2(p)})

(n+ 1)!
(Dnh(p))(v2(p)).

Note that in order to apply this formula, we need to verify first thatv1(p) is indeed
smaller than (or equal to)v2(p). Since the combinatorial structure ofP(p) does not
change throughout the interior of the chamber, we only need to check the order of the
two vertices for one value of the parameters from the interior of the chamber, a point
which we may compute as in subsection 5.1.

5.14.3 Summation over a two-dimensional parametric polytope

For two-dimensional polytope, formula (5.36) has three kinds of contributions: the
integral of the polynomial over the polytope, contributions along edges and contribu-
tions along vertices. As suggested by Berline (2007), the integral can be computed by
applying the Green-Stokes theorem:

"

P(p)

(

∂M
∂x
−
∂L
∂y

)

=

∫

∂P(p)
(L dx+ M dy).
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In particular, ifM(p)(x, y) is such that∂M
∂x (p)(x, y) = h(p)(x, y) then

"

P(p)
h(p)(x, y) =

∫

∂P(p)
M(p)(x, y) dy.

Care must be taken to integrate over the boundary in the positive direction. Assuming
the vertices of the polygon are not given in a predetermined order, we can check the
correct orientation of the vertices of each edge individually. Let n = (n1,n2) be the
inner normal of a facet and letv1(p) andv2(p) be the two vertices of the facet, then the
vertices are in the correct order if

∣
∣
∣
∣
∣
∣

v2,1(p) − v1,1(p) n1

v2,2(p) − v1,2(p) n2

∣
∣
∣
∣
∣
∣
≥ 0.

Since these two vertices belong to the same edge, their orderwill not change within a
chamber and so we can again perform this check for a single value of the parameters.
To integrateM over an edgeF, let f be a primitive integer vector in the direction of the
edge. Thenv2(p) = v1(p)+k(p) f and any point on the edge can be written asv1(p)+λf
with 0 ≤ λ ≤ k(p). That is,

∫

F
M(p)(x, y) dy=

∫ k(p)

0
M(p)(v1,1(p) + λ f1, v1,2(p) + λ f2) f2 dλ. (5.39)

For the edges, we can again apply (5.37), but we must first project the supporting
cone at the edge into the linear subspace orthogonal to the edge. Letn = (n1,n2) be
the (primitive integer) inner normal of this facetF(p), thenf = (−n2,n1) is parallel to
the facet and we can write one of the verticesv(p) as a linear combination of these two
vectors:

v(p) =
[

f n
]

a(p) =

[

−n2 n1

n1 n2

]

a(p) (5.40)

or

a(p) =

[

−n2 n1

n1 n2

]−1

v(p) =

[

−n2/d n1/d
n1/d n2/d

]

v(p), (5.41)

with d = n2
1 + n2

2. The lattice associated to the linear subspace orthogonal to the facet
is the projection ofΛ into this space. Sincen is primitive, a basis for this lattice can
be identified withn/d. The coordinate of the whole facet in this space is therefore
da2(p) =

[

n1 n2

]

v(p), while the transverse cone isda2(p) + R+. Similarly, a linear
functional ξ′ projects onto a linear functionalξ = 〈ξ′,n〉/d in the linear subspace.
Applying (5.37), withy = n1

d D1+
n2
d D2 andt = {−n1v1(p) − n2v2(p)}, we therefore find

DP(p),F(p) = −

∞∑

n=0

b(n+ 1, {−n1v1(p) − n2v2(p)})
(n+ 1)!

(n1

d
D1 +

n2

d
D2

)n

= −

∞∑

i=0

∞∑

j=0

b(i + j + 1, {−n1v1(p) − n2v2(p)})
(i + j + 1)!

ni
1n j

2

di+ j
Di

1D j
2.

After applying this differential operator to the polynomialh(p)(x), the resulting poly-
nomialh′(p)(x) = DP(p),F(p) ·h(p)(x) needs to be integrated over the facet. The measure
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to be used is such that the integral of a lattice tile in the linear space parallel to the facet
is 1, i.e.,

∫ f

0
1 =

∫ 1

0
1dz= 1,

with z the coordinate alongf . Referring to (5.40) and (5.41), all points of the facet have
the formx(p) = zf + a2(p) n, while thez-coordinate of the verticesv1(p) andv2(p) are
(−n2v1,1 + n1v1,2)/d and (−n2v2,1 + n1v2,2)/d, respectively. That is, the contribution of
the facet is equal to

∫ (−n2v2,1+n1v2,2)/d

(−n2v1,1+n1v1,2)/d
h′(p) (zf + a2(p) n) dz,

where, again, we need to ensure that the lower limit is smaller than the upper limit
using the usual method of plugging in a particular value of the parameters.

Finally, we consider the contributions of the vertices. Thetransverse cones are in
this case simply the supporting cones. Sinceµ is a valuation, we may apply Barvinok’s
decomposition and assume that the cone is unimodular. For anaffine cone

K = v(p) + R+r1 + R+r2

= (a1(p) + R+)r1 + (a2(p) + R+)r2,

with
a(p) =

[

r1 r2

]−1
v(p),

we have (Berline and Vergne 2006, Proposition 31),

µ(K)(ξ) =
et1y1+t2y2

(1− ey1)(1− ey2)
+

1
y1

B(y2 −C1y1, t2) +
1
y2

B(y1 −C2y2, t1) −
1

y1y2
, (5.42)

with

B(y, t) =
ety

1− ey
+

1
y
= −

∞∑

n=0

b(n+ 1, t)
(n+ 1)!

yn,

yi = 〈ξ, r i〉, Ci = 〈v1, v2〉/〈vi , vi〉 andti = {−ai(p)}. Expanding (5.42), we find

µ(K)(ξ) =



−
b(0, t1)

y1
−

∞∑

n=0

b(n+ 1, t1)
(n+ 1)!

yn
1







−
b(0, t2)

y2
−

∞∑

n=0

b(n+ 1, t2)
(n+ 1)!

yn
2





−





∞∑

n=0

b(n+ 1, t2)
(n+ 1)!

yn
2

y1
+

∞∑

n=0

b(n+ 1, t2)
(n+ 1)!

(y2 −C1y1)n − yn
2

y1





−





∞∑

n=0

b(n+ 1, t1)
(n+ 1)!

yn
1

y2
+

∞∑

n=0

b(n+ 1, t1)
(n+ 1)!

(y1 −C2y2)n − yn
1

y2





−
1

y1y2

=

∞∑

n1=0

∞∑

n2=0

c(C1,C2, t1, t2; n1,n2) yn
1yn

2,
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with

c(C1,C2, t1, t2; n1,n2) =
b(n1 + 1, t1)

(n1 + 1)!
b(n2 + 1, t2)

(n2 + 1)!

−
b(n1 + n2 + 1, t2)

(n1 + n2 + 1)!

(

n1 + n2 + 1
n1 + 1

)

(−C1)n1+1

−
b(n1 + n2 + 1, t1)

(n1 + n2 + 1)!

(

n1 + n2 + 1
n2 + 1

)

(−C2)n2+1 .

Forξ = D, we have

yn
1yn

2 =
(

r1,1D1 + r1,2D2
)n1

(

r2,1D1 + r2,2D2
)n2

=





n1∑

k=0

rk
1,1rn1−k

1,2

(

n1

k

)

Dk
1Dn1−k

2









n2∑

l=0

r l
2,1rn2−l

2,2

(

n2

l

)

Dl
1Dn2−l

2





and soDP(p),v(p) = µ(K)(D) =

∞∑

i=0

∞∑

j=0

∑

i+ j=n1+n2

n1≥0
n2≥0

∑

k+l=i
0≤k≤n1

0≤l≤n2

c(C1,C2, t1, t2; n1,n2)rk
1,1rn1−k

1,2 r l
2,1rn2−l

2,2

(

n1

k

)(

n2

l

)

Di
1D j

2.

The contribution of this vertex is then

h′(p)(v(p)),

with h′(p)(x) = DP(p),v(p) · h(p)(x).

Example 5.43 As a simple example, consider the (non-parametric) triangle in Figure 5.44
and assume we want to compute

∑

x∈T∩Z2

x1x2.

Since T∩ Z2 = { (2,4), (3,4), (2,5) }, the result should be

2 · 4+ 3 · 4+ 2 · 5 = 30.

Let us first consider the integral

"

T
x1x2 =

∫

∂T

x2
1x2

2
dx2.

Integration along each of the edges of the triangle yields the following.
For the edge in the margin, we havef = (1,0), i.e., f2 = 0. The contribution of this

edge to the integral is therefore zero.
For this edge, we havef = (−1,1). The contribution of this edge to the integral is

therefore
∫ 1

0

(3− λ)2(4+ λ)
2

dλ =
337
24
.
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x1x2

(2,4) (3,4)

(2,5)

· ·

·

Figure 5.44: Sum of polynomialx1x2 over the integer points in a triangleT

For this edge, we havef = (0,−1). The contribution of this edge to the integral is
therefore

∫ 1

0

22(5− λ)
2

(−1)dλ = −9.

The total integral is therefore

∫

∂T

x2
1x2

2
dx2 = 0+

337
24
− 9 =

121
24
.

Now let us consider the contributions of the edges. We will need the following
Bernoulli numbers in our computations.

b(1,0) = −
1
2

b(2,0) =
1
6

b(3,0) = 0

b(4,0) = −
1
30

The normal to the facet F1 in the margin isn = (0,1). The vectorf = (−1,0) is
parallel to the facet. We have

[

2
4

]

= −2

[

−1
0

]

+ 4

[

0
1

]

and

[

3
4

]

= −3

[

−1
0

]

+ 4

[

0
1

]

.
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Therefore t= {−4} = 0, y = D2,

DT,F1 = −

∞∑

j=0

b( j + 1,0)
( j + 1)!

D j
2

= −
b(1,0)

1
−

b(2,0)
2

D2 + · · ·

and

h′(x) = DT,F1 · x1x2 =

(

1
2
−

1
12

D2

)

· x1x2 =
1
2

x1x2 −
1
12

x1.

With x1 = −z and x2 = 4, the contribution of this facet is
∫ −2

−3
−2z+

1
12

z dz=
115
24
.

The normal to the facet F2 in the margin isn = (1,0). The vectorf = (0,1) is
parallel to the facet. We have

[

2
4

]

= 4

[

0
1

]

+ 2

[

1
0

]

and

[

2
5

]

= 5

[

0
1

]

+ 2

[

1
0

]

.

Therefore t= {−2} = 0, y = D1,

DT,F2 = −

∞∑

i=0

b(i + 1,0)
(i + 1)!

Di
1

= −
b(1,0)

1
−

b(2,0)
2

D1 + · · ·

and

h′(x) = DT,F2 · x1x2 =

(

1
2
−

1
12

D1

)

· x1x2 =
1
2

x1x2 −
1
12

x2.

With x1 = 2 and x2 = z, the contribution of this facet is
∫ 5

4
z−

1
12

z dz=
33
8
.

The normal to the facet F3 in the margin isn = (−1,−1). The vectorf = (1,−1) is
parallel to the facet. We have

[

3
4

]

= −
1
2

[

1
−1

]

−
7
2

[

−1
−1

]

and

[

2
5

]

= −
3
2

[

1
−1

]

−
7
2

[

−1
−1

]

.

Therefore t= {7} = 0, y = − 1
2D1 −

1
2D2,

DT,F3 = −

∞∑

i=0

∞∑

j=0

b(i + j + 1,0)
(i + j + 1)!

(−1)i+ j

2i+ j
Di

1D j
2

= −
b(1,0)

1
+

1
2

b(2,0)
2

D1 +
1
2

b(2,0)
2

D2 + · · ·
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and

h′(x) = DT,F4 · x1x2 =

(

1
2
+

1
24

D1 +
1
24

D2

)

· x1x2 =
1
2

x1x2 +
1
24

x2 +
1
24

x1.

With x1 = z+ 7
2 and x2 = −z+ 7

2, the contribution of this facet is

∫ − 1
2

− 3
2

1
2

(z+
7
2

)(−z+
7
2

) +
1
24

(−z+
7
2

) +
1
24

(z+
7
2

) dz=
47
8
.

The total contribution of the edges is therefore

115
24
+

33
8
+

47
8
=

355
24
.

Finally, we consider the contributions of the vertices.
For the vertexv = (3,4), we haver1 = (−1,0) andr2 = (−1,1). Sincev is integer,

we have t1 = t2 = 0. Also, C1 = 1, C2 = 1/2, y1 = −D1 and y2 = −D1 + D2. Since the
total degree of the polynomial x1x2 is two, we only need the coefficients ofµ(K)(ξ) up
to n1 + n2 = 2.

n1 n2

0 0
(

b(1,0)
1!

b(1,0)
1! −

b(2,0)
2!

(
1
1

)

(−1)1 − b(2,0)
2!

(
1
1

)

(− 1
2)1

)

1 0
(

b(2,0)
2!

b(1,0)
1! −

b(3,0)
3!

(
2
2

)

(−1)2 − b(3,0)
3!

(
2
1

)

(− 1
2)1

)

(−D1)

0 1
(

b(1,0)
1!

b(2,0)
2! −

b(3,0)
3!

(
2
1

)

(−1)1 − b(3,0)
3!

(
2
2

)

(− 1
2)2

)

(−D1 + D2)

2 0
(

b(3,0)
3!

b(1,0)
1! −

b(4,0)
4!

(
3
3

)

(−1)3 − b(4,0)
4!

(
3
1

)

(− 1
2)1

)

(−D1)2

1 1
(

b(2,0)
2!

b(2,0)
2! −

b(4,0)
4!

(
3
2

)

(−1)2 − b(4,0)
4!

(
3
2

)

(− 1
2)2

)

(−D1) (−D1 + D2)

0 2
(

b(1,0)
1!

b(3,0)
3! −

b(4,0)
4!

(
3
1

)

(−1)1 − b(4,0)
4!

(
3
3

)

(− 1
2)3

)

(−D1 + D2)2

We find

h′(x) =

(

3
8
−

1
24

(−D1) −
1
24

(−D1 + D2) +
7

576
(−D1D2) −

5
1152

(−2D1D2)

)

x1x2

=
3
8

x1x2 +
1
24

x2 −
1
24

(−x2 + x1) +
7

576
(−1)−

5
1152

(−2).

The contribution of this vertex is therefore

h′(3,4) =
1355
288
.

For the vertexv = (2,5), we haver1 = (0,−1) andr2 = (1,−1). Sincev is integer,
we have t1 = t2 = 0. Also, C1 = 1, C2 = 1/2, y1 = −D2 and y2 = D1−D2. We similarly
find

h′(x) =
3
8

x1x2 +
1
24

x1 −
1
24

(x2 − x1) +
7

576
(−1)−

5
1152

(−2).

The contribution of this vertex is therefore

h′(2,5) =
1067
288
.
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For the vertexv = (2,4), we haver1 = (1,0) andr2 = (0,1). Sincev is integer, we
have t1 = t2 = 0. The computations are easier in this case since C1 = C2 = 0, y1 = D1

and y2 = D2. We find

h′(x) =
1
4

x1x2 −
1
12

x2 −
1
12

x1 +
1

144
(1).

The contribution of this vertex is therefore

h′(2,4) =
253
144
.

The total contribution of the vertices is then

1355
288

+
1067
288

+
253
144
=

61
6

and the total sum is
121
24
+

355
24
+

61
6
= 30.

Example 5.45 Consider the parametric polytope

P(n) = { x | x1 ≥ 2∧ 3x1 ≤ n+ 9∧ 4 ≤ x2 ≤ 5 }.

If n ≥ −3, then the vertices of this polytope are(2,4), (2,5), (3+n/3,4) and(3+n/3,5).
The contributions of the faces of P(n) to

∑

x∈P(n)∩Z2

x1x2

for the chamber n≥ −3 are shown in Table 2. The final result is
{

n2

2 − 3n
{

n
3

}

+ 21
2 n+ 9

2

{
n
3

}2
− 63

2

{
n
3

}

+ 45 if n + 3 ≥ 0.

5.15 Summation through exponential substitution and Laurent ex-
pansions

This section was inspired by Baldoni et al. (2008).
Let f (x) be the generating function of a polytopeP, i.e.,

f (x) =
∑

t∈P∩Zd

xt .

Substitutingx = ey, we obtain

f (ey) =
∑

t∈P∩Zd

e〈t,y〉 =
∑

t∈P∩Zd

∑

n≥0

tnyn

n!
=

∑

n≥0





∑

t∈P∩Zd

tn





yn

n!
,
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n2

4
+

9
2

n+
45
4

2
33
8

3+ n/3 −
3
2

n
{n

3

}

+
3
4

n+
9
4

{n
3

}2
−

63
4

{n
3

}

+
57
8

4

23
216

n2 +
23
12

n+
115
24

5 31
216

n2 +
31
12

n+
155
24

(3+ n/3,5)
−

31
36

n
{n

3

}

+
31
72

n+
31
24

{n
3

}2
−

217
24

{n
3

}

+
589
144

(2,5) 341
144

(2,4)

253
144

(3+ n/3,4)
−

23
36

n
{n

3

}

+
23
72

n+
23
24

{n
3

}2
−

161
24

{n
3

}

+
437
144

Table 2: Contributions of the faces ofP(n) to the sum ofx1x2 over the integer points of
P(n)
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with n! = n1!n2! · · · nd!. We observe that the sum of the monomialtn over the integer
points inP is equal ton! times the coefficient of theyn term in the Taylor expansion of
f (ey).

As in the case of unweighted counting (see subsection 5.11),we have to add the
coefficients of these monomials in the Laurent expansions of the terms in (5.26). How-
ever, unlike the case of unweighted counting, we cannot transform this problem to a
univariate problem and computing the coefficient of a monomial in the Laurent expan-
sions does not reduce to computing the coefficient of a single higher-degree monomial
in a Taylor expansion.

Consider now one of the termsg(x) = fik(x) in (5.26),

g(ey) =
e
∑d

j=1 sj (p)〈b j ,y〉

∏d
j=1

(

1− e〈b j ,y〉
) ,

with wi j (p) =
∑d

j=1 sj(p)b j written in terms of theb j , which are assumed to form a
basis and where we have made explicit the only place where theparametersp appear.
We rewrite this equation as

g(ey) =





d∏

j=1

−1
〈b j , y〉









d∏

j=1

−〈b j , y〉esj (p)〈b j ,y〉

1− e〈b j ,y〉




. (5.46)

The second factor is analytic and is a product of generating functions Todd(sj(p), 〈b j , y〉)
of Bernoulli polynomials (5.38). Plugging in these expressions, we find

Todd(sj(p), 〈b j , y〉) =
−〈b j , y〉esj (p)〈b j ,y〉

1− e〈b j ,y〉

=

∞∑

n=0

b(n, sj(p))

n!
〈b j , y〉n

=
∑

k≥0

b(
∑

ki , sj(p))

(
∑

ki)!

(∑

ki

k

)

bk
j y

k

=
∑

k≥0

b(
∑

ki , sj(p))
∏

i ki !
bk

j y
k , (5.47)

with
(∑

ki

k

)

=

( ∑

ki

k1, k2, . . . kd

)

=
(
∑

ki)!
k!

=

d∏

i=1

(∑i
j=1 k j

ki

)

the multinomial coefficients. For the first factor, we compute the Laurent expansion of
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each of its factors,

−1
〈b j , y〉

=
−1

∑d
k= f b jkyk

=
−1

b j f yf

(

1+
∑d

k= f+1 b jkyk

b j f yf

)

=
−1

b j f yf

∞∑

n=0

(−1)n




∑d
k= f+1 b jkyk

b j f yf





n

=
∑

n≥0

(∑

nk

n

)

(−1)
∑

nk+1
b′j

n

b
∑

nk+1
j f

y′n

y
∑

nk+1
f

, (5.48)

whereb j f is the first non-zero coefficient ofb j and the vectorb′j contains the subsequent
d − f coefficients ofb j .

Given a polynomial
q(y,p) =

∑

m

βm(p) ym

that we wish to sum over the integer points of a polytopeP, we perform the following
operations for each unimodular cone in the decomposition ofeach vertex cone.

• For eachm with βm(p) , 0

– Compute all sumsN =
∑d

j=1(0,−
∑

k n jk − 1,n j) of exponents from (5.48)
such thatN ≤ m and compute the corresponding coefficientγN in the prod-
uct of Laurent series by enumerating all combinations ofn j leading to the
sameN. Note that there are only a finite number ofN satisfying this con-
straint since

∑

Nk = −d. By reordering the variables such that the highest
exponents occurs for the first variable, the number ofN can be reduced.

– For each of theseN

∗ Compute the coefficientδm−N(p) of ym−N in the product of Taylor ex-
pansions (5.47).

• The contribution of this cone is the sum of

m! α βm(p) γN δm−N(p)

over all consideredm andN.

Within each vertex cone computation, the coefficientsγN andδm−N(p) only need to be
computed once.

Example 5.49 Consider once more the rational generating function

f (T; x) =
x2

1

(1− x−1
1 )(1− x−1

1 x2)
+

x2
2

(1− x−1
2 )(1− x1x−1

2 )
+

1
(1− x1)(1− x2)
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from Verdoolaege (2005, Example 39) and Example 5.30. Assume we want to compute
∑

y∈T∩Z2

y2
1 + y2

2.

We will need the following Bernoulli polynomials

b(0, s) = 1

b(1, s) =
1
2

(−1+ 2s)

b(2, s) =
1
6

(

1− 6s+ 6s2
)

b(3, s) =
1
2

(

s− 3s2 + 2s3
)

b(4, s) =
1
30

(

−1+ 30s2 − 60s3 + 30s4
)

For the first term, substitution yields

h(y) =
1
y1

1
y1 − y2

y1e(−2)(−y1)

1− e−y1

(y1 − y2)e0(−y1+y2)

1− e−y1+y2

=
1
y1





1
y1



1+
y2

y1
+

y2
2

y2
1

+ · · ·









(

1+
b(1,−2)

1
(−y1) +

b(2,−2)
2

(−y1)2 +
b(3,−2)

3!
(−y1)3 +

b(4,−2)
4!

(−y1)4 + · · ·

)

(

1+
−1
2

(−y1 + y2) +
1
12

(−y1 + y2)2 + 0(−y1 + y2)3 +
1

720
(−y1 + y2)4 + · · ·

)

We obtain the following results:

m N γNyN m − N δm−Nym−N m!αβmγNδm−N

(2,0) (−2,0) 1y−2
1 (4,0)

721
240

y4
1

721
120

(0,2) (−2,0) 1y−2
1 (2,2)

179
720

y2
1y2

2

179
360

(−3,1) 1y−3
1 y2 (3,1) −

211
120

y3
1y1 −

211
60

(−4,2) 1y−4
1 y2

2 (4,0)
721
240

y4
1

721
120
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For the second term, we similarly obtain

m N γNyN m − N δm−Nym−N m!αβmγNδm−N

(2,0) (−1,−1) −1y−1
1 y−1

2 (3,1)
1

180
y3

1y1 −
1
90

(−2,0) −1y−2
1 (4,0) −

1
720

y4
1

1
360

(0,2) (−1,−1) −1y−1
1 y−1

2 (1,3) −
211
120

y1y3
2

211
60

(−2,0) −1y−3
1 y2 (2,2)

179
720

y3
1y2 −

179
360

(−3,1) −1y−3
1 y2 (3,1)

1
180

y3
1y1 −

1
90

(−4,2) −1y−4
1 y2

2 (4,0) −
1

720
y4

1

1
360

Finally, for the third term, we obtain

m N γNyN m − N δm−Nym−N m!αβmγNδm−N

(2,0) (−1,−1) −1y−1
1 y−1

2 (3,1) 0y3
1y1 0

(0,2) (−1,−1) −1y−1
1 y−1

2 (1,3) 0y1y3
2 0

Adding up all contributions in the final columns of these tables, we obtain a grand total
of

12.

5.16 Conversion to “standard form”

Some algorithms or tools expect a polyhedron to be specified in “standard form”, i.e.,





Ax = b

x ≥ 0.
(5.50)

Given an arbitrary (parametric) polyhedron

{ x | Ax + b(p) ≥ 0 }, (5.51)

a conversion to standard form requires the introduction of slack variables and a way of
dealing with variables of unrestricted sign. In this section we will be satisfied with a
reduction to the form






Ax = b

Dx ≥ c,
(5.52)

with D a diagonal matrix with positive entries. That is, we do not necessarily make all
variables non-negative, but we do ensure that they have a lower bound. If needed, a
subsequent reduction can then be performed.

The standard way of dealing with variables of unrestricted sign is to replace a vari-
ablex of unknown sign by the difference (x = x′ − x′′) of two non-negative variables
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(x′, x′′ ≥ 0). However, some algorithms are somewhat sensitive with respect to the
number of variables and so we would prefer to introduce as fewextra variables as pos-
sible. We will therefore apply a unimodular transformationon the variables such that
all transformed variables are known to be non-negative.

The first step is to compute the HNF of A, i.e., a matrixH = AU, with U unimod-
ular, in column echelon form such that the first entry in each column is positive and
the other entries on the corresponding row are non-negativeand strictly smaller than
this first entry. By reordering the rows we may assume that thetop square part ofH is
lower-triangular. By a further unimodular transformation, the entries below the diago-
nal can be made non-positive and strictly smaller (in absolute value) than the diagonal
entry of the same row.

For each of the new variables, we can take a positive combination of the corre-
sponding row and the previous rows to obtain a positive multiple of the corresponding
unit vector, implying that the variable has a lower bound. A slack variable can then be
introduced for each of the rows in the top square part ofH′ that is not already a positive
multiple of a unit vector and for each of the rows below the topsquare part ofH′.

Example 5.53 Consider the cone
{

x |
[

67 −13
−52 53

]

x ≥ 0
}

.

This cone is already situated in the first quadrant, but this may not be obvious from
the constraints. Furthermore, directly adding slack variables would lead to a total
of 4 variables, whereas we can also represent this cone in standard form with only 3
variables. We have

H′ =

[

1 0
−1331 2875

]

=

[

67 −13
−52 53

] [

−6 13
−31 57

]

= AU′.

Adding a slack variable for the second row of H′, we obtain the equivalent problem






[

−1331 2875 −1
]

x′ = 0

x′ ≥ 0

with

x =
[

−6 13 0
−31 57 0

]

x′.

A similar construction was used by Eisenbrand (2000, Lemma 3.10) and Hung and
Rom (1990).

5.17 Using TOPCOM to compute Chamber Decompositions

In this section, we describe how to use the correspondence between the regular triangu-
lations of a point set and the chambers of the Gale transform of the point set (Gelfand
et al. 1994) to compute the chamber decomposition of a parametric polytope. This
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correspondence was also used by Pfeifle and Rambau (2003) Eisenschmidt and K̈oppe
(2007).

Let us first assume that the parametric polytope can be written as





x ≥ 0

Ax ≤ b(p),
(5.54)

where the right hand sideb(p) is arbitrary and may depend on the parameters. The first
step is to add slack variabless to obtain the vector partition problem






Ax + I s= b(p)

x, s≥ 0,

with I the identity matrix. Then we compute the (right) kernelK of the matrix
[

A I
]

,
i.e., [

A I
]

K = 0

and useTOPCOM’s points2triangs to compute the regular triangulations of the points
specified by the rows ofK. Each of the resulting triangulations corresponds to a cham-
ber in the chamber complex of the above vector partition problem. Each simplex in a
triangulation corresponds to a parametric vertex active onthe corresponding chamber
and each point in the simplex (i.e., a row ofK) corresponds to a variable (x j or sj) that
is set to zero to obtain this parametric vertex. In the original formulation of the prob-
lem (5.54) each such variable set to zero reflects the saturation of the corresponding
constraint (x j = 0 for x j = 0 and〈a j , x〉 = b j(p) for sj = 0). A description of the
chamber can then be obtained by plugging in the parametric vertices in the remaining
constraints.

Example 5.55 Consider the parametric polytope

P(p,q, r) = { (i, j) | 0 ≤ i ≤ p∧0 ≤ j ≤ 2i+q∧0 ≤ k ≤ i−p+r∧p ≥ 0∧q ≥ 0∧r ≥ 0 }.

The constraints involving the variables are









1

1

1









i

j

k





≥

≥

≥

0

0

0




1 0 0

−1 0 1

−2 1 0









i

j

k





≤

≤

≤

p

q

−p+ r

We have





1 0 0 1 0 0
−1 0 1 0 1 0
−2 1 0 0 0 1









−1 0 0
−2 0 −1
−1 −1 0
1 0 0
0 1 0
0 0 1





= 0

Computing the regular triangulations of the rows of K usingTOPCOM, we obtain

72



> cat e2.topcom

[

[ -1 0 0 ]

[ -2 0 -1 ]

[ -1 -1 0 ]

[ 1 0 0 ]

[ 0 1 0 ]

[ 0 0 1 ]

]

> points2triangs --regular < e2.topcom

T[1]:={{0,1,2},{1,2,3},{0,1,4},{1,3,4},{0,2,5},{2,3,5},{0,4,5},{3,4,5}};

T[2]:={{1,2,3},{1,3,4},{2,3,5},{3,4,5},{1,2,5},{1,4,5}};

T[3]:={{1,2,3},{1,3,4},{2,3,5},{3,4,5},{1,2,4},{2,4,5}};

We see that we have three chambers in the decomposition, one with 8 vertices and
two with 6 vertices. Take the second vertex (“{1,2,3}”) of the first chamber. This
vertex corresponds to the saturation of the constraints j≥ 0, k ≥ 0 and i ≤ p, i.e.,
(i, j, k) = (p,0,0). Plugging in this vertex in the remaining constraints, we see that it is
only valid in case p≥ 0, r ≥ 0 and2p+ q ≥ 0. For the remaining vertices of the first
chamber, we similarly find
{0,1,2} (0,0,0) p ≥ 0, −q+ r ≥ 0 and q≥ 0
{1,2,3} (p,0,0) p ≥ 0, r ≥ 0 and2p+ q ≥ 0
{0,1,4} (0,0,−p+ r) −q+ r ≥ 0, p ≥ 0 and q≥ 0
{1,3,4} (p,0, r) p ≥ 0, r ≥ 0 and2p+ q ≥ 0
{0,2,5} (0,q,0) q ≥ 0, p ≥ 0 and−q+ r ≥ 0
{2,3,5} (p,2p+ q,0) p ≥ 0, 2p+ q ≥ 0 and r≥ 0
{0,4,5} (0,q,−p+ r) q ≥ 0, −q+ r ≥ 0 and p≥ 0
{3,4,5} (p,2p+ q, r) p ≥ 0, 2p+ q ≥ 0 and r≥ 0

Combining these constraints with the initial constraints of the problem on the parame-
ters p≥ 0, q ≥ 0 and r≥ 0, we find the chamber{ (p,q, r) | p ≥ 0∧−p+r ≥ 0∧q ≥ 0 }.
For the second chamber, we have
{1,2,3} (p,0,0) p ≥ 0, r ≥ 0 and2p+ q ≥ 0
{1,3,4} (p,0, r) p ≥ 0, r ≥ 0 and2p+ q ≥ 0
{2,3,5} (p,2p+ q,0) p ≥ 0, 2p+ q ≥ 0 and r≥ 0
{3,4,5} (p,2p+ q, r) p ≥ 0, 2p+ q ≥ 0 and r≥ 0
{1,2,5} (− q

2 ,0,0) −q ≥ 0, 2p+ q ≥ 0 and−2p− q+ 2r ≥ 0
{1,4,5} (− q

2 ,0,−p− q
2 + r) −q ≥ 0, −2p− q+ 2r ≥ 0 and2p+ q ≥ 0

The chamber is therefore{ (p,q, r) | q = 0 ∧ p ≥ 0 ∧ −p + r ≥ 0 }. Note that by
intersecting with the initial constraints this chamber is no longer full-dimensional and
can therefore be discarded. Finally, for the third chamber,we have
{1,2,3} (p,0,0) p ≥ 0, r ≥ 0 and2p+ q ≥ 0
{1,3,4} (p,0, r) p ≥ 0, r ≥ 0 and2p+ q ≥ 0
{2,3,5} (p,2p+ q,0) p ≥ 0, 2p+ q ≥ 0 and r≥ 0
{3,4,5} (p,2p+ q, r) p ≥ 0, 2p+ q ≥ 0 and r≥ 0
{1,2,4} (p− r,0,0) p− r ≥ 0, r ≥ 0 and2p+ q− 2r ≥ 0
{2,4,5} (p− r,2p+ q− 2r,0) p− r ≥ 0, 2p+ q− 2r ≥ 0 and r≥ 0

The chamber is therefore{ (p,q, r) | p− r ≥ 0∧ q ≥ 0∧ r ≥ 0 }.
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Now let us consider general parametric polytopes. First note that we can follow the
same procedure as above if we replacex by x′ − c(p) in (5.54), i.e., if our problem has
the form






x′ ≥ c(p)

Ax′ ≤ b(p) + Ac(p),
(5.56)

as saturating a constraintxi = 0 is equivalent to saturating the constraintx′i = ci(p) and,
similarly, 〈a j , x〉 = b j(p) is equivalent to〈a j , x′〉 = b j(p) + 〈a j , c(p)〉.

In the general case, the problem has the form

Ax ≥ b(p)

and then we apply the technique of subsection 5.16. LetA′ be a non-singular square
submatrix ofA with the same number of columns and compute the (left) HNFH =
A′U with U unimodular andH lower-triangular with non-positive elements below the
diagonal. Replacingx by Ux′, we obtain






Hx′ ≥ b′(p)

−A′′U x′ ≤ −b′′(p),

with A′′ the remaining rows ofA andb(p) split in the same way. IfH happens to be
the identity matrix, then our problem is of the form (5.56) and we already know how
to solve this problem. Note that, again, saturating any of the transformed constraints in
x′ is equivalent to saturating the corresponding constraint in x. We therefore only need
to compute−A′′U for the computation of the kernelK. To construct the parametric
vertices in the original coordinate system, we can simply use the original constraints.
The same reasoning holds ifH is any diagonal matrix, since we can virtually replace
Hx by x′ without affecting the non-negativity of the variables.

If H is not diagonal, then we can introduce new constraintsx′j ≥ d(p), where
d(p) is some symbolic constant. These constraints do not removeany solutions since
each row inH expresses that the corresponding variable is greater than or equal to a
non-negative combination of the previous variables plus some constant. We can then
proceed as before. However, to reduce unnecessary computations we may remove
from K the rows that correspond to these new rows. Any solution saturating the new
constraint, would also saturate the corresponding constraint hT

j and all the constraints
corresponding to the non-zero entries inhT

j . If a chamber contains a vertex obtained by
saturating such a new constraint, it would appear multiple times in the same chamber,
each time combined with different constraints from the above set. Furthermore, there
would also be another (as it turns out, identical) chamber where the vertex is only
defined by the other constraints.

Example 5.57 Consider the parametric polytope

P(n) = { (i, j) | 1 ≤ i ∧ 2i ≤ 3 j ∧ j ≤ n }.

The constraints are 



1 0
−2 3
0 −1





[

i
j

]

≥





1
0
−n




.
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The top2 × 2 submatrix is already in HNF. We have3 j ≥ 2i ≥ 2, so we can add a
constraint of the form j≥ c(n) and obtain

[

A I
]

=

[

0 1 1 0
2 −3 0 1

]

,

while K with
[

A I
]

K = 0 is given by

[

0 1 1 0
2 −3 0 1

]





1 0
0 1
0 −1
−2 3





.

The second row of K corresponds to the second variable, whichin turn corresponds to
the newly added constraint. Passing all rows of K toTOPCOM we would get

> points2triangs --regular <<EOF

> [[1 0],[0,1],[0,-1],[-2,3]]

> EOF

T[1]:={{0,1},{0,2},{1,3},{2,3}};

T[2]:={{0,2},{2,3},{0,3}};

T[3]:={};

The first vertex in the first chamber saturates the second row (row 1) and therefore
saturates both the first (0) and fourth (3) and it appears a second time as{1,3}.
Combining these “two” vertices into one as{0,3} results in the second (identical)
chamber. Removing the row corresponding to the new constraint from K we remove
the duplicates

> points2triangs --regular <<EOF

> [[1 0],[0,-1],[-2,3]]

> EOF

T[1]:={{0,1},{1,2},{0,2}};

T[2]:={};

Note that in this example, we also could have interchanged the second and the third
constraint and then have replaced j by− j′.

In practice, this method of computing a chamber decomposition does not seem to
perform very well, mostly becauseTOPCOM can not exploit all available information
about the parametric polytopes and will therefore compute many redundant triangula-
tions/chambers. In particular, any chamber that does not intersect with the parameter
domain of the parametric polytope, or only intersects in a face of this parameter do-
main, is completely redundant. Furthermore, if the parametric polytope is not simple,
then many different combinations of the constraints will lead to the same parametric
vertex. Many triangulations will therefore correspond to one and the same chamber
in the chamber complex of the parametric polytope. For example, for a dilated octa-
hedron,TOPCOM will compute 150 triangulations/chambers, 104 of which are empty,
while the remaining 46 refer to the same single chamber.
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5.18 Computing the Hilbert basis of a cone

To compute the Hilbert basis of a cone, we use thezsolve library from4ti2 (Hemmecke
et al. ), which implements the technique of Hemmecke (2002).We first remove all
equalities from the cone through unimodular transformations and then apply the tech-
nique of subsection 5.16 to put the cone in “standard form”. Note that for a (non-
parametric) cone the constant termb in (5.51) is0. The constraintsDx ≥ c = 0 of
(5.52) are therefore equivalent tox ≥ 0.

5.19 Integer Feasibility

For testing whether a polytopeP ⊂ Qd contains any integer points, we use the technique
of Cook et al. (1993), based on generalized basis reduction.

The technique basically looks for a “short vector”c in the latticeZd, where short-
ness is measured in terms of the width of the polytopeP along that direction,

widthc P = max{ 〈c, x〉 | x ∈ P } −min{ 〈c, x〉 | x ∈ P }

= max{ 〈c, x − y〉 | x, y ∈ P }.

The lattice widthis the minimum width over all non-zero integer directions:

widthP = min
c∈Zd\{0}

widthc P.

If the dimensiond is fixed then the lattice width of any polytopeP ⊂ Qd contain-
ing no integer points is bounded by a constant (Lagarias et al. 1990; Barvinok 2002;
Banaszczyk et al. 1999). If we slice the polytope using hyperplanes orthogonal to a
short direction, i.e., a direction where the width is small,we will therefore only need to
inspect “few” of them before either finding one with an integer point, or running out of
hyperplanes, meaning that the polytope did not contain any integer points. Each slice
is checked for integer points by applying the above method recursively.

A nice feature of this technique is that it will not only tell you if there is any integer
point in the given polytope, but it will actually compute oneif there is any.

The short vector is obtained as the first vector of a “reduced basis” of the latticeZd

with respect to the polytope. In particular, the first vectorb1 of this reduced basis will
satisfy

widthb1 P ≤
widthP

(
1
2 − ε

)d−1
,

with 0 < ε < 1/2 a fixed constant. That is, the width in directionb1 is no more than
a constant factor bigger than the lattice width. See (Cook etal. 1993) for details. In
our implementation we useε = 1/4. When used in the above integer feasibility testing
algorithm, we will also terminate the reduced basis computation as soon as the width
along the first basis vector is smaller than 2. This means thatthere will be at most 2
slices orthogonal to the chosen direction.

The computation of the above reduced basis requires the solution of many linear
programs, for which we use any of the following external solvers:
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• GLPK (Makhorin 2006)

This solver is based on double precision floating point arithmetic and may there-
fore not be suitable if the coefficients of the constraints describing the polytope
are large.

• cdd (Fukuda 1993)

This solver is based on exact integer arithmetic. Note that you need version
cddlib 0.94e or newer. Earlier versions (0.93–0.94d) have a bug that may
sometimes result in a polytope being reported as (rationally) empty even though
it is not.

• piplib (Feautrier 2006)

This solver is also based on exact integer arithmetic and uses the dual simplex
method to solve a linear program. Two versions are available, pip will present
the original program topiplib, while pip-dual will present the dual program
to piplib, effectively having it apply the primal simplex method to the original
problem. The latter may seem more appropriate since the computation of the
reduced basis only requires the dual solution of any linear program. However, in
practice, it appears thatpip is often faster thanpip-dual.

The LP solver to use can be selected with the--gbr option.

5.20 Computing the integer hull of a polyhedron

For computing the integer hull of a polyhedron, we first describe how to compute the
convex hull of a set given as an oracle for optimizing a linearobjective function over
the set and then we explain how to optimize a linear objectivefunction over the integer
points of a polyhedron. Applying the first with the second as optimization oracle yields
a method for computing the requested integer hull.

5.20.1 Computing the convex hull based on an optimization oracle

The algorithm described below is presented by Cook et al. (1992, Remark 2.5) as an
extension of the algorithm by Edmonds et al. (1982, Section 3) for computing the
dimensionof a polytope for which only an optimization oracle is available. The al-
gorithm is described in a bit more detail by Eisenbrand (2000) and reportedly stems
from Hartmann (1989). Essentially the same algorithm has also been implemented by
Huggins (2006), citing beneath/beyond (Preparata and Shamos 1985) as his inspiration.

The algorithm start out from an initial set of points from thesetS. After computing
the convex hull of this set of points, we take one of its bounding constraints and use
the optimization oracle to compute an optimal point inS (but on the other side of the
bounding hyperplane) along the outer normal of this bounding constraint. If a new
point is found, it is added to the set of points and a new convexhull is computed, or
the old one is adapted in a beneath/beyond fashion. Otherwise, the chosen bounding
constraint is also a bounding constraint ofS and need not be considered anymore. The
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Figure 5.58: The integer hull of a polytope

process continues until all bounding constraints in the description of the current convex
hull have been considered.

In principle, the initial set of points in the above algorithm may be empty, with
a “convex hull” described by a set of conflicting constraintsand each equality in the
description of any intermediate lower-dimensional convexhull being considered as a
pair of bounding constraints with opposite outer normals. However, in our implemen-
tation, we have chosen to first compute a maximal set of affinely independent points by
first taking any point fromS and then adding points fromS not on one of the equal-
ities satisfied by all points found so far. This allows us to not have to worry about
equalities in the main algorithm. In the case of the computation of the integer hull,
finding these affinely independent points can be accomplished using the technique of
subsection 5.19.

Example 5.59 Assume we want to compute the integer hull of the polytope in the left
part of Figure 5.58. We first compute a set of three affinely independent points, shown
in the same part of the figure. Of the three facets of the corresponding convex hull,
optimization along the outer normal (depicted by an arrow inthe figure) of only one
facet will yield any additional points. The other two are therefore facets of the integer
hull. Optimization along the above outer normal may yield any of the points marked
by a◦. Assuming it is the bottom one, we end up with the updated convex hull in the
middle of the figure. This convex hull has only one new facet. Adding the point found
by optimizing over this facet’s outer normal, we obtain the convex hull on the right of
the figure. There are two new facets, but neither of them yields any further points. We
have therefore found the integer hull of the polytope.

5.20.2 Optimization over the integer points of a polyhedron

We assume that we want to find theminimumof some linear objective function. When
used in the computation of the integer hull of some polytope,the objective function
will therefore correspond to the inner normal of some facet.

During our search for an optimal integer point with respect to some objective func-
tion, we will keep track of the best point so far as well as a lower boundl and an upper
boundu such that the value at the optimal point (if it is better than the current best) lies
between those two bounds. Initially, there is no best point yet and values forl andu
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Figure 5.60: The integer points of a polytope projected on anobjective function

may be obtained from optimization over the linear relaxation. When used in the com-
putation of the integer hull of some polytope, the upper bound u is one less than the
value attained on the given facet of the current approximation.

As long asl ≤ u, we perform the following steps

• use the integer feasibility technique of subsection 5.19 totest whether there is
any integer point with value in [l,u′], whereu′ is

– u if the previous test for an integer point did not produce a point

– l +
⌊

u−l−1
2

⌋

if the previous test for an integer pointdid produce a point

• if a point is found, then remember it as the current best and replaceu by the value
at this point minus one,

• otherwise, replacel by u′ + 1.

When used in the computation of the integer hull of some polytope, it is useful to not
only keep track of the best point so far, but of all points found. These points will all lie
outside of the current approximation of the integer hull andadding them all instead of
just one, will typically get us to the complete integer hull quicker.

Example 5.61 Assume that the values of some objective function attained by the in-
teger points of some polytope are as shown in Figure 5.60 and assume we know that
the optimal value lies between 1 and 16. In the first step we would look for a point
attaining a value in the interval[1,16]. Suppose this yields a point attaining the value
8 (second line of the figure). We record this point as the current best and update the
search interval to[1,7]. In the second step, we look for a point attaining a value in the
interval [1,4], but find nothing and set the search interval to[5,7]. In the third step,
we consider the interval[5,7] and find a point attaining the value 6. We update the
current best value and set the search interval to[5,5]. In the fourth step, we consider
the interval[5,5], find no points and update the interval to “[6,5]”. Since the lower
bound is now larger than the upper bound, the algorithm terminates, returning the best
or all point(s) found.
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5.21 Computing the integer hull of a truncated cone

In subsection 5.22 we will need to compute the integer hull ofa cone with the origin
removed (C \ {0}).

5.21.1 Using the Hilbert basis of the cone

As proposed by K̈oppe (2007), one way of computing this integer hull is to firstcom-
pute the Hilbert basis ofC (see subsection 5.18) and to then remove from that Hilbert
basis the points that are not vertices of the integer hull ofC \ {0}. The Hilbert basis of
C is the minimal set of pointsbi ∈ C ∩ Zd such that every integer pointx ∈ C ∩ Zd

can be written as a non-negativeintegercombination of thebi . The verticesv j of the
integer hull ofC \ {0} are such that every integer pointx ∈ (C∩Zd) \ {0} can be written
as s non-negativerational combination ofv j . Clearly, anyv j is also abi sincev j can
not be written as the sum of a (rational) convex combination of other integer points in
(C ∩ Zd) \ {0} and a non-negative combination of the extremal raysr k of C. A fortiori,
it can therefore not be written as an integer combination of other integer points inC.
To obtain thev j from thebi we therefore simply need to remove first (0,0) and then
thosebi that are not an extremal ray and thatcanbe written as a combination

bi =
∑

j,i

α jb j +
∑

k

βkr k with α j , βk ≥ 0 and
∑

j,i

α j = 1.

Since ther k are also among theb j , this can be simplified to checking whether there
exists a rational solution forα j to

bi =
∑

j,i

α jb j with α j ≥ 0 and
∑

j,i

α j ≥ 1.

Example 5.63 Consider the cone

C = pos{(2,−3), (3,4)},

shown in Figure 5.62. The Hilbert basis of this cone is

{(0,0), (2,−3), (3,4), (1,1), (1,−1), (1,0)}.

We have(1,0) = 1
2(1,1) + 1

2(1,−1), while (1,1) and (1,−1) can not be written as
overconvex combinations of the otherbi , 0. The vertices of the integer hull of C\ {0}
are therefore

{(2,−3), (3,4), (1,1), (1,−1)}.

5.21.2 Using generalized basis reduction

Another way of computing the integer hull of a truncated coneis to apply the method
of subsection 5.20. In this case, the initial set of points will consist of (the smallest
integer representatives of) the extremal rays of the cone, together with the extremal
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Figure 5.62: The Hilbert basis and the integer hull of a truncated cone
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Figure 5.64: The integer hull of a truncated cone

rays themselves. That is, ifC = pos{r j} with r j ∈ Z
d, then our initial approximation of

the integer hull ofC \ {0} is
conv{r j} + pos{r j}.

Furthermore, we need never consider any of the bounding constraints that are also
bounding constraints of the original cone. When optimizing along the normal of any of
the other facets, we can take the lower bound to be 1. This willensure that the origin
is excluded, without excluding any other integer points.

Example 5.65 Consider once more the cone

C = pos{(2,−3), (3,4)}

from Example 5.63. The initial approximation is

C = conv{(2,−3), (3,4)} + pos{(2,−3), (3,4)},

which is shown on the left of Figure 5.64. The only bounding constraint that does not
correspond to a bounding constraint of C is7x − y ≥ 17. In the first step, we will
therefore look for a point minimizing7x − y with values in the interval[1,16]. All
values of this objective function in the given interval attained by points in C are shown
in Figure 5.60. From Example 5.61, we know that the optimal value is6 and this cor-
responds to the point(1,1). Adding this point to our hull, we obtain the approximation
in the middle of Figure 5.64. This approximation has two new facets. The bounding
constraint3x− 2y ≥ 1 will not produce any new points since we would be looking for
one in the interval “[1,0]”. The other new bounding constraint is4x+y ≥ 5. Minimiz-
ing 4x+ y with values in the interval[1,4], we find the minimal value3 corresponding
to the point(1,−1). Adding this point, we obtain the complete integer hull shown on
the right of Figure 5.64. Note that if in the first step we wouldhave added not only the
point corresponding to the optimal value, but instead all points found in Example 5.61,
then we would have obtained the complete integer hull directly.
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5.22 Computing the lattice width of a parametric polytope

To compute the lattice width of a parametric polytope, we essentially use the technique
of Eisenbrand and Shmonin (2007), which improves upon the technique of Kannan
(1992). Given a parametric polytope

P(p) = { x | Ax + b(p) ≥ 0 },

the width along a directionc is defined in the same way as for non-parametric polytopes
(see subsection 5.19),

widthc P(p) = max{ 〈c, x〉 | x ∈ P(p) } −min{ 〈c, x〉 | x ∈ P(p) }. (5.66)

The lattice widthis the minimum width over all non-zero integer directions:

widthP(p) = min
c∈Zd\{0}

widthc P(p).

We assume that the parameter domainQ of P(p), i.e., the set of parameter values for
which P(p) , ∅, is full-dimensional and that for eachp from the interior ofQ, P(p) is
also full-dimensional.

Clearly, for any given directionc, the minimum and maximum in (5.66) are attained
at (different) vertices ofP(p). The idea of the algorithm is then to consider all pairs
of parametric vertices ofP(p), to compute all candidate integer directions for a given
pair of vertices and then to compute the minimum width over all candidate integer
directions found.

For any given parametric vertexv(p), the (rational) directions for which this ver-
tex is minimal can be found as follows. Letv(p) + C be the vertex cone ofv(p). If
v(p) is minimal for c, then all other points in the vertex cone must yield a bigger or
equal value, i.e.,〈y, c〉 ≥ 0 for all y ∈ C. The set of directions is therefore the po-
lar coneC∗ of C. Note that, in principle, we should only do this for pairs of vertices
that have a common activity domain, where the activity domains have been partially
opened using the technique of Theorem 5.12 to avoid multiplevertices that coincide on
a lower-dimensional chamber to all be considered on this intersection. However, this
optimization has currently not been implemented.

Given a pair of verticesv1(p) andv2(p), we may assume thatv1(p) attains the mini-
mum andv2(p) attains the maximum. Ifv1(p)+C1 andv2(p)+C2 are the corresponding
vertex cones, then the set of (rational) directions for thispair of vertices is

C1,2 =
(

C∗1 ∩ −C∗2
)

\ {0}.

The set of candidate integer directions are therefore the vertices of the integer hull of
C1,2, which can be computed as explained in subsection 5.21. To see this, note that by
construction〈c, v1(p)〉 ≤ 〈c, v2(p)〉 and so

wc(p) = widthc P(p) = 〈c, v2(p) − v1(p)〉 ≥ 0.

Any integer direction inC1,2 will therefore yield a width that is at least as large as
that of one of the vertices of the integer hull. Note that whenusing generalized basis
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v3

v4
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Figure 5.67: A polytope and its candidate width directions

reduction to compute the integer hull of these cones as in subsubsection 5.21.2, it can
be helpful to use as vertices for the initial approximation not only the extremal rays of
the cone, but also those vertices of previously computed integer hulls that are elements
of the current cone.

After computing a list of all possible candidate width directions ci and the corre-
sponding widthswci (p), we keep only a single direction of all those that yield the same
width (as an affine function of the parameters). Then we construct the chambers where
each of the widths is minimal, i.e.,

Ci = {p ∈ Q | ∀ j : wci (p) ≤ wc j (p) }.

Note that many of theCi may be empty or of lower dimension than Q and that the
otherCi will intersect in common facets. To obtain a partition of partially-open full-
dimensional chambers, we proceed as in subsection 5.4.

Example 5.68 Consider the (non-parametric) polytope

P =






x |

−3x1 + 5x2 ≥ 0

4x1 − 5x2 ≥ 0

x1 − 2x2 + 3 ≥ 0

−3x1 + 4x2 + 3 ≥ 0





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Figure 5.69: The cone of directionsC2,1

shown in Figure 5.67. The polytope has four vertices

v1 = (9,6)

v2 = (5,4)

v3 = (0,0)

v4 = (5,3).

The corresponding cones of directions (for the given vertexto attain the minimum),
also shown in Figure 5.67 are

C∗1 = pos{(−3,4), (1,−2)}

C∗2 = pos{(4,−5), (1,−2)}

C∗3 = pos{(4,−5), (−3,5)}

C∗4 = pos{(−3,5), (−3,4)}.

Let us now consider the directions in whichv2 is minimal whilev1 is maximal. We
find

C2,1 = pos{(4,−5), (3,−4)} \ {0},

as shown in Figure 5.69. The vertices of the integer hull of C2,1 are (4,−5) and(3,−4).
The corresponding widths are

c1 = (4,−5) wc1 = 6

c2 = (3,−4) wc2 = 4.

We similarly find
C3,1 = pos{(4,−5), (−1,2)} \ {0},
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Figure 5.70: The cone of directionsC3,1

Figure 5.71: The cone of directionsC4,1
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Figure 5.72: A polytope and its lattice width directions

with integer hullpos{(4,−5), (−1,2), (1,−1)}, shown in Figure 5.70, yielding

c3 = (4,−5) wc3 = 6

c4 = (−1,2) wc4 = 3

c5 = (1,−1) wc5 = 3.

On the other hand,
C4,1 = ∅,

as shown in Figure 5.71 and so this combination does not yieldany width direction
candidates. The other pairs of vertices further yield

c6 = (−1,2) wc6 = 3

c7 = (−3,5) wc7 = 5

c8 = (−3,4) wc8 = 4

c9 = (−3,5) wc9 = 5

c10 = (−2,3) wc10 = 3.

Since the polytope under consideration is not parametric, there is only one (non-empty,
0-dimensional) chamber and it corresponds to one of the directions, sayc4 = (−1,2),
with width3 (the other directions with the same width having been removed).

Each of the three directions that yield the minimal width of 3is shown in Figure 5.72.
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Example 5.73 Consider the polytope

P(p) =






x |

−2x1 + p+ 5 ≥ 0

2x1 + p+ 5 ≥ 0

−2x2 − p+ 5 ≥ 0

2x2 − p+ 5 ≥ 0






from Woods (2004, Example 2.1.7). The parametric vertices are

v1(p) =

(

p+ 5
2
,
−p+ 5

2

)

v2(p) =

(

p+ 5
2
,

p− 5
2

)

v3(p) =

(

−p− 5
2
,
−p+ 5

2

)

v4(p) =

(

−p− 5
2
,

p− 5
2

)

.

We find two essentially different candidate width directions

c1 = (0,1) wc1(p) = 5− p

c2 = (1,0) wc2(p) = 5+ p.

The first direction can be found by combining, say,v1(p) andv2(p), while the second
direction can be found by combining, say,v1(p) andv3(p). The parameter domain for
the parametric polytope P(p) is

Q = { p | −5 ≤ p ≤ 5 }.

The two (closed) chambers are therefore

C1 = { p ∈ Q | 5− p ≤ 5+ p }

C2 = { p ∈ Q | 5+ p ≤ 5− p }.

To obtain a partition, subsection 5.1 gives the internal point (0,0), which happens to
meet the facets p≥ 0 and−p ≥ 0. We therefore keep the facet with positive (inner)
normal closed and open up the other facet. The result is

Ĉ1 = { p | 0 ≤ p ≤ 5 }

Ĉ2 = { p | −5 ≤ p < 0 }.

Since we are usually only interested in integer parameter values, the latter chamber
would becomêC2 = { p | −5 ≤ p ≤ −1 }.

Our description differs slightly from that of of Eisenbrand and Shmonin (2007).
First, they consider all pairs of basic solutions instead ofall pairs of vertices, which
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means that they may consider basic solutions that are never feasible and that, in case of
a non-simple polytope, they may consider the same parametric vertex more than once.
The set of integer directions for a pair of vertices is the intersection of the sets of integer
directions they obtain for each of the corresponding basic solutions. Second, they use
a different method of creating a partition of partially-open chambers, which may lead
to some lower-dimensional chambers surviving and hence to alarger total number of
chambers.

5.23 Testing whether a set has an infinite number of points

In some situations we are given the generating function of some integer set and we
would like to know if the set is infinite or not. Typically, we want to know if the set
is empty or not, but we cannot simply count the number of elements in the standard
way since we may not have any guarantee that the set has only a finite number of
elements. We will consider the slightly more general case where we are given a rational
generating functionf (x) of the form (5.26) such that

f (x) =
∑

s∈Q∩Zd

c(s) xs (5.74)

converges on some nonempty open subset ofCd, Q is a pointed polyhedron andc(s) ≥
0, and we want to compute

S =
∑

s∈Q∩Zd

c(s), (5.75)

where the sum may diverge, i.e., “S = ∞”. The following proposition shows that
we can determineS in polynomial time. For a sketch of an alternative technique, see
Woods (2005, Proof of Lemma 16).

Proposition 5.76 Fix d and k. Given a rational generating function of the form(5.26)
with ki ≤ k and a pointed polyhedron Q⊂ Qd, then there is a polynomial time algo-
rithm that determines for the corresponding function c(s) (5.74)whether the sum(5.75)
diverges and computes the value of S(5.75)if it does not.

Proof Since Q is pointed, the series (5.74) converges on a neighborhood ofeℓ =
(eℓ1, . . . ,eℓd) for any ℓ such that〈r k, ℓ〉 < 0 for any (extremal) rayr k of Q and such
that〈bi j , ℓ〉 , 0 for anybi j in (5.26). Letα = −ℓ and perform the substitutionx = tα.
The functiong(t) = f (tα) is then also a (short) rational generating function and

g(t) =
∑

k∈〈α,Q〉∩Z





∑

s∈Q∩Zd

〈α,s〉=k

c(s)





tk =:
∑

k∈〈α,Q〉∩Z

d(k) tk,

with 〈α,Q〉 = {〈α, x〉 | x ∈ Q}, converges in a neighborhood ofe−1, while

S =
∑

k∈〈α,Q〉∩Z

d(k).

89



Sincec(s) ≥ 0, we haved(k) ≥ 0 and the above sum diverges iff any of the coefficients
of the negative powers oft in the Laurent expansion ofg(t) is non-zero. If the sum
converges, then the sum is simply the coefficient of the constant term in this expansion.

It only remains to show now that we can compute a suitableα in polynomial time,
i.e., anα such that〈r k,α〉 > 0 for any (extremal) rayr k of Q and〈bi j ,α〉 , 0 for any
bi j in (5.26). By adding ther k to the list ofbi j if needed, we can relax the first set of
constraints to〈r k,α〉 ≥ 0. Let Q be described by the constraintsAx + c ≥ 0 and let
B bed × d non-singular submatrix ofA, obtained by removing some of the rows ofA.
Such aB exists sinceQ does not contain any straight line. Clearly,Br ≥ 0 for any ray
r of Q. Let b′i j = Bbi j , then sincebi j , 0 and B is non-singular, we haveb′i j , 0. We
may therefore find in polynomial time a pointα′ ≥ 0 on the “moment curve” such that
〈b′i j ,α

′〉 , 0 (Barvinok and Pommersheim 1999, Algorithm 5.2). Letα = BTα′. Then
〈bi j ,α〉 = 〈bi j , BTα′〉 = 〈Bbi j ,α

′〉 = 〈b′i j ,α
′〉 , 0 and〈r k,α〉 = 〈r k, BTα′〉 = 〈Br k,α

′〉 ≥

0, as required. Note that in practice, we would, as usual, first try a fixed number of
random vectorsα′ ≥ 0 before resorting to looking for a point on the moment curve.

�

5.24 Enumerating integer projections of parametric polytopes

In this section we are interested in computing

c(s) = #
{

t ∈ Zd | ∃u ∈ Zm : (s, t,u) ∈ P
}

, (5.77)

with P ⊂ Qn × Qd × Qm a rational pointed polyhedron such that

Ps =
{

(t,u) ∈ Qd × Qm | (s, t,u) ∈ P
}

is a polytope for anys. This is equivalent to computing the number of points in the
integer projection of a parametric polytope

c(s) = #
(

π(Ps∩ Z
d+m)

)

,

with π : Qd × Qm → Qd defined byπ(t,u) = t. Exponential methods for computing
c(s) are described by Verdoolaege et al. (2005a) and Seghir and Loechner (2006). Here,
we provide some implementation details for the polynomial method of Barvinok and
Woods (2003, Theorem 1.7), for computing the generating function,

∑

s c(s) xs, which
can then be converted into an explicit functionc(s) (Verdoolaege and Woods 2008,
Corollary 1.11). Note that in contrast to Barvinok and Woods(2003, Theorem 1.7),
we may allowP to be an unbounded (but still pointed) polyhedron here (as long as
Ps is bounded), since we replace their application of Kannan (1992, Lemma 3.1) by
Eisenbrand and Shmonin (2007, Theorem 5).

If there is only one existentially quantified variable (m= 1), then computing (5.77)
is easy. You simply shiftP by 1 in theu direction and subtract this shifted copy from
the original,

D = P \ (en+d+1 + P).

(See, e.g., Barvinok and Woods (2003, Figure 1, page 973) or Verdoolaege (2005,
Figure 4.33, page 186).) In the differenceD there will beexactlyone value ofu for
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each value of the remaining variables for which there wasat leastone value ofu in P,

∀(s, t) : (∃u : (s, t,u) ∈ P) ⇐⇒ (∃!u : (s, t,u) ∈ D) .

The functionc(s) can then be computed by counting the number of elements inD(s).
These operations can be performed either in the space of (unions of) parametric poly-
topes or on generating functions. In the first case,D(s) can be written as a disjoint
union of parametric polytopes that can be enumerated separately. In the second case,
we first compute the generating functionf (x, y) of the set

S = {(s, t) | ∃u ∈ Z : (s, t,u) ∈ P}

and then obtain the generating functionC(x) of c(s) asC(x) = f (x,1). In the remainder
of this section, we will concentrate on the computation of the generating function of
S. To compute this generating function in the current case where there is only one
existentially quantified variable, we first compute the generating functiong(x, y, z) of
P(s, t,u), perform operations on the generating function equivalent to the set opera-
tions (see, e.g., Verdoolaege (2005, Section 4.5.3)), resulting in a generating function
g′(x, y, z), and then sum over all values (at most one for each value ofsandt) of u, i.e.,
f (x, y) = g′(c, y,1).

If there is more than one existentially quantified variable (m > 1), then we can
in principle apply the above shifting and subtracting technique recursively to obtain a
generating functionf (x, y) for the set

T = {(s, t) | ∃u ∈ Zm : (s, t,u) ∈ P} (5.79)

and then computeC(x) = f (x,1). There are however some complications. Most no-
tably, after applying the technique in one direction and projecting out the corresponding
variable, the resulting set, i.e.,

S = {(s, t,u1, . . . ,um−1) | ∃um ∈ Z : (s, t,u) ∈ P},

in general does not correspond to the integer points in some polytope. For example, as-
sume that the polytope in Figure 5.78 contains the values ofu associated to a particular
value of (s, t). Since there are integer points in this polytope, we shouldcount this value
of t, but only once. If we apply the above technique in the vertical direction (u2), then
we can compute (a generating function for) the setS shown on the bottom of the figure.
Note, however, that there are “gaps” in this set, i.e., if we computeS\ (en+d+1+S) then
we will not end up with a single point (for this value of (s, t)). Since the biggest gap is
three wide, we need to compute

S \ (en+d+1 + S) \ (2en+d+1 + S) \ (3en+d+1 + S)

to obtain a single point. If we do the subtraction in the horizontal direction first, then
we end up with a set (shown on the left) with gaps at most two wide, so afterwards we
only need to subtract twice in the vertical direction.

In general, there is no bound on the widths of the gaps we may encounter in
any given direction. However, there are directions in whichthe gaps are known to
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Figure 5.78: A polytope and its integer projections
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Figure 5.80: A transformed polytope and its integer projection
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be “small”. In particular, if the dimensionm is fixed, then the lattice width (see
subsection 5.22) of lattice point free polytopes is boundedby a constantω(m) (Lagarias
et al. 1990; Barvinok 2002; Banaszczyk et al. 1999). This means that in the direction
of the lattice width of a polytope, the gaps will be not be larger thanω(m) (Barvinok
and Woods 2003, Theorem 4.3). Otherwise, we would be able to put a (uniformly)
scaled down version of the polytope in the gap and it would contain no lattice points,
which would contradict the fact that its lattice width is bounded byω(m). Figure 5.78
contains such a scaled down copy of the original polytope. However, neither the hori-
zontal nor the vertical direction is a lattice width direction of this polytope. The actual
lattice width of this polytope was computed in Example 5.68 as 3 with correspond-
ing directionc = (−1,2). Figure 5.80 shows the result of applying the unimodular
transformation [

−1 2
0 1

]

to the polytope. Note that the horizontal direction now has gaps of width at most 1.
After shifting, subtracting and projecting in the verticaldirection, we therefore end up
with a setS with gaps of width 1 and we then only have to shift and subtractonce in
the remaining (horizontal) direction.

In fact, for two-dimensional polytopes the gaps in the lattice width direction will
always be one, as shown by the following lemma.

Lemma 5.81 For any rational polygon, the gaps in a lattice width direction are of
width at most 1.

Proof We may assume thatx is the given lattice width direction of a given polygonP.
If there is a gap of width 2, then there is an integer valuex1 of x such thatP∩{ (x1, y) } ,
∅, P∩ { (x1 + 2, y) } , ∅, while P∩ { (x1 + 1, y) } ∩ Z2 = ∅. Using Barvinok and Woods
(2003, Lemma 4.2), we can put a scaled down copyP′ of P betweenx = x1 and
x = x1 + 2 (and inside ofP). P′ meets the linex = x1 + 1 between two consecutive
integer points,y1 andy1 + 1. LetP′′ be the polygon bounded byx = x1 andx = x1 + 2
and two lines that separateP′ from these two integer points.P′′ will have the same
width (2) in thex direction, whileP′ ⊂ P′′. The x direction is therefore also a lattice
width direction ofP′′. P′′ cannot intersect bothx = x1 andx = x1 + 2 in a segment
of length greater than or equal to 1. Otherwise, it would alsointersectx = x1 + 1 in a
segment of length greater than or equal to 1.

We may therefore assume that the length of the intersection of P′′ with x = x1 is
smaller than 1. If this line segment contains an integer point, then call ity2. Otherwise,
let y2 be the greatest integer smaller than the points in the line segment. We may assume
thaty1 = y2. Otherwise, we can apply the unimodular transformation

[

x
y′

]

=

[

1 0
y1 − y2 1

] [

x
y

]

,

without changing the width in directionx. If P′′ contains (x1, y1), it intersectsx = x1

in a segment [y1 − α1, y1 + α2]. We may then similarly assume thatα2 ≥ α1. P′′ will
only cut x = x1 + 2 in points withy-coordinate smaller than 2− α2. The width in the
y direction will therefore be smaller than 2− α2 + α1 ≤ 2, contradicting thatx is a
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Figure 5.82: Lattice point free polygon with lattice width 2

lattice width direction. IfP′′ does not contain (x1, y1), then it only intersectsx = x1 in
points withy-coordinatey1 + α with 0 < α < 1. Given any such point, it is clear that
P′′ intersectsx = x1 + 2 only in points withy-coordinate strictly betweeny1 − α and
y1+ 1− α, again showing that the width in they direction is smaller than 2 and leading
to the same contradiction. The contradiction shows that there can be no gaps of width
2 in the lattice width direction ofP. �

Note that theω(2) bound is too coarse to reach the above conclusion asω(2) > 2.
An example of a polygon with lattice with greater than 2 is thepolygon with vertices
(−17/110,83/110), (2/10,−9/10) and (177/90,100/90), shown in Figure 5.82, which
has width 221/110.

The idea of the projection algorithm is now to first find a direction in which the
gaps are expected to be small and to unimodularly transform the existentially quan-
tified variables such that this direction lies in the direction of one of the transformed
variables. Then, the remaining existentially quantified variables are projected out by
applying the technique recursively. The resulting generating function will have gaps
at mostω(m) wide and so we have to subtract at mostω(m) shifted copies of this
generating function before we can plug in 1 to project out theselected (and now only
remaining) existentially quantified variable. We now look at each of these step in a bit
more detail.

We are given a polyhedronP such thatPs is a polytope and we want to compute a

94



generating functionf (x, y) for the setT in (5.79). We first compute the lattice width
directions of them-dimensional parametric polytopePs,t as in subsection 5.22. The
result is a partition of the parameter domain, i.e., the projection ofP onto the firstn+d
coordinates, into partially open polyhedraQi , together with the lattice width direction
ci corresponding to eachQi . Since the generating functions only encode integer points,
we can replace each open facet〈a, x〉 + b > 0 by the closed facet〈a, x〉 + b− 1 ≥ 0 to
obtain a collection of closed polyhedrãQi . Now let

Pi = P∩ Q̃i × Q
m

and let fi(x, y) be the generating function of the set

Ti = {(s, t) | ∃u ∈ Zm : (s, t,u) ∈ Pi}.

Then clearly,
f (x, y) =

∑

i

fi(x, y).

From now on, we will consider a particularPi with corresponding lattice widthci and
drop thei subscript.

We are now given a polyhedronP such that the lattice width direction ofPs,t is c.
We first extendc to anm×munimodular matrixU using the technique of subsection 5.7,

U =

[

cT

U′

]

and then compute

P′ =





In 0 0
0 Id 0
0 0 U




P.

We have
T = {(s, t) | ∃u′ ∈ Zm : (s, t,u′) ∈ P′},

i.e., we may have changed the values of the existentially quantified variables, but we
have not changed the setT. Now consider the set

T′ = {(s, t,u′1) | ∃(u′2, . . . ,u
′
m) ∈ Zm−1 : (s, t,u′) ∈ P′}.

This set has onlym− 1 existentially quantified variables, so we may apply this projec-
tion algorithm recursively and obtain the generating function f ′(x, y, z) for T′. The set
T′ may no longer correspond to the integer points in a polytope,but, by construction,
the gaps in the final coordinate are small (≤ ω(m)).

By now we have a generating functionf ′(x, y, z) for the setT′ (with small gaps in
the final coordinate) and we have to compute the generating function f (x, y) for T. By
computing

f ′′(x, y, z) = f ′(x, y, z)
⌊ω(m)⌋⊕

k=1

(

zk f ′(x, y, z)
)

, (5.83)
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where⊕ represents the operation on generating functions that corresponds to set dif-
ference on the corresponding sets, we obtain a generating for the setT′′ where only
the smallest value ofu′1 is retained. The total number ofu′1s associated to any (s, t) is
therefore either zero or one and so the “multiset” defined by taking as many copies of
(s, t) as there are associated values ofu′1 is actually the setT. That is

f (x, y) = f ′′(x, y,1).

The only remaining problem is that the “⊕” operation in (5.83) is fairly expensive.
In particular, this operation is performed by first computing the Hadamard product of
the two generating functions (which corresponds to the intersection of the sets) and then
subtracting the resulting generating function from this first generating function. The
last operation is fairly cheap, but the Hadamard product hasa time complexity which
while polynomial if the dimension (in this case the maximum of ki in (5.26)) is fixed,
is exponential in this dimension. Furthermore, this dimension increases by maxki − d
on each successive application of the Hadamard product, while maxki > d as soon as
some projection is performed, which certainly happens in the recursive application of
the algorithm. Now, the total number of Hadamard products isbounded by a constant
⌊ω(m)⌋ and so the increase in dimension is also bounded by a constant, so the whole
operation is still polynomial for fixed dimension. Nevertheless, we do not want to
perform any additional Hadamard products if we do not reallyhave to. That is, we
would like to be able to detect when we can stop performing these operationsbefore
reaching the upper bound⌊ω(m)⌋.

Let f ′0(x, y, z) = f ′(x, y, z) and let f ′k(x, y, z) be the result of applying the “set differ-
ence” in (5.83)k times. Denote the corresponding sets byT′0 andT′k. We want to find
the smallestk such thatf ′′(x, y, z) = f ′k(x, y, z). Note that we are talking about equal-
ity of rational functions here. Any further application of the set difference operation
will not change this rational function, but itwill typically produce a different (more
complex) representation. To check whether the currentk is sufficient, we are going to
count how many times any element ofT′k still appears in a shifted copy ofT′0, with shift
greater than or equal tok+1. If this number is zero, any further set difference will have
no effect. That is, we want to compute

∞∑

l=k+1

∣
∣
∣T′l ∩

(

en+d+1 + T′
)∣∣
∣ ,

or, in terms of generating functions,

h(x, y, z) =
∞∑

l=k+1

f ′k(x, y, z) ⋆ zl f ′(x, y, z).

We should point out here that while the Hadamard product (⋆) corresponds to intersec-
tion when applied to generator functions of indicator functions (i.e., with coefficients
one or zero), in general it will produce a generating function with coefficients that are
the product of the corresponding coefficients in the two operands. We can therefore
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rewrite the above equation as

h(x, y, z) =
∞∑

l=k+1

f ′k(x, y, z) ⋆ zl f ′(x, y, z)

= f ′k(x, y, z) ⋆





∞∑

l=k+1

zl f ′(x, y, z)





= f ′k(x, y, z) ⋆
zk+1 f ′(x, y, z)

1− z
.

Computingh(x, y,1) would give us a generating function with as coefficients how many
times a point ofT′k still appears in a shifted copy ofT′0 for any particular value ofsand
t. However, we want to know if this number is zero forall values ofs and t, so we
computeh(1,1,1) instead. We have to be careful here since we allow the polyhedronP
to be unbounded and so we should apply the technique of subsection 5.23 withQ the
projection ofP on the remaining coordinates.

Note that testing whether we can stop is more expensive than applying the next iter-
ation (since we have an extra (1− z) factor in the denominator of one of the operands).
However, we may save many iterations by stopping early and wewill not needlessly
replace a given representation off ′′(x, y, z) by a more complex representation (with
more factors in the denominator). An alternative way of checking whether we can stop
is to test whetherf ′k(x, y, z) = f ′k+1(x, y, z) (as rational functions). To do so, we would
need to check that both

f ′k(x, y, z) −
(

f ′k(x, y, z) ⋆ f ′k+1(x, y, z)
)

and
f ′k+1(x, y, z) −

(

f ′k(x, y, z) ⋆ f ′k+1(x, y, z)
)

are zero and this Hadamard product is more expensive than theone above.

Example 5.85 Consider once more the parametric polytope

P(p) =






x |

−2x1 + p+ 5 ≥ 0

2x1 + p+ 5 ≥ 0

−2x2 − p+ 5 ≥ 0

2x2 − p+ 5 ≥ 0






from Woods (2004, Example 2.1.7) and Example 5.73 and assumewe want to compute

c(p) =
[

∃x ∈ Z2 : (p, x) ∈ P
]

.

That is, we simply want to know for which values of p the polytope is non-empty. Now,
there are more efficient ways of answering this particular question, but we will use it
here as an example of the above algorithm. The polytope P(p) is shown in Figure 5.84
for all integer value of the parameter for which the polytopeis non-empty.
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Figure 5.84: The parametric polytope from Example 5.85 for different values of the
parameter
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Figure 5.86: The transformed parametric polytope from Example 5.85 for 0≤ p ≤ 5

99



The first step is to compute the lattice width of P(p). In Example 5.73, we already
obtained the decomposition of the parameter domain into

Ĉ1 = { p | 0 ≤ p ≤ 5 }

Ĉ2 = { p | −5 ≤ p ≤ −1 },

with corresponding lattice widths and lattice width directions

c1 = (0,1) wc1(p) = 5− p

c2 = (1,0) wc2(p) = 5+ p.

Note that in this example, the gaps in both coordinate directions are1, so, in principle,
there is no need to perform any unimodular transformation here. Nevertheless, we will
apply the transformation that would be applied by the algorithm. On the first domain,
we extend the lattice width direction to the unimodular matrix

[

0 1
1 0

]

.

After application to the existentially quantified variables x, we obtain the parametric
polytope

P′1(p) =






x |

−2x2 + p+ 5 ≥ 0

2x2 + p+ 5 ≥ 0

−2x1 − p+ 5 ≥ 0

2x1 − p+ 5 ≥ 0

p ≥ 0






shown in the top part of Figure 5.86. We now temporarily remove the existential quan-
tification on x1, resulting in

T′ = {(p, x1) ∈ Z2 | ∃x2 ∈ Z : (s, x) ∈ P′}.

Since there is only one existentially quantified variable left, we know we only have to
shift and subtract the set once to obtain a set with at most onevalue of x2 associated
to each value of(p, x1). In particular, let f(x, z1, z2) be the generating function of
the integer points in P′. Then g(x, z1) = f ′(x, z1,1), with f′(x, z1, z2) = f (x, z1, z2) −
f (x, z1, z2) ⋆ z2 f (x, z1, z2), is the generating function of T′.

To check whether we need to subtract any shifted copies of g(x, z1) from itself, we
compute

h(x, z1) = g(x, z1) ⋆
z1 g(x, z1)

1− z1
.

The second argument of this Hadamard product is depicted in Figure 5.86 by its coef-
ficients. The exponents in h(x, z1) that have a non-zero coefficient are therefore those
marked by both a dot (•) and a number. The total sum can be computed as h(1,1) = 26,
which is finite, but non-zero. We therefore need to subtract at least one shifted copy of
g(x, z1). Let

g′(x, z1) = g(x, z1) − g(x, z1) ⋆ z1g(x, z1).
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Computing

h′(x, z1) = g′(x, z1) ⋆
z2

1 g(x, z1)

1− z1
,

we would find that h′(1,1) = 0 and so we do not need to shift and subtract any further.
However, since we are dealing with a two-dimensional problem, we already know from
Theorem 5.81 that we can stop after one shift and subtract, sowe do not even need
to compute h′(x, z1) here. The function g′(x, z1) now only has non-zero coefficients for
at most one exponent of z1 for each exponent of x. We may therefore project down to
obtain the function g′(x,1), which is the generating function of the set in the lower left
part of Figure 5.86.

For the chamber̂C2 of the parameter domain, the computations are nearly identical
and the final result is simply the sum of the two generating functions found for each of
the two (disjoint) chambers.
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6 Publications

6.1 Publications about the Library

This is a list of some reports and publications explaining details of parts of thebarvinok
library.

• Analytical computation of Ehrhart polynomials and its applications for embed-
ded systems (Verdoolaege, Beyls, Bruynooghe, Seghir, and Loechner; 2004b)

• Analytical computation of Ehrhart polynomials and its applications for embed-
ded systems (Verdoolaege, Beyls, Bruynooghe, Seghir, and Loechner; 2004c)

• Analytical Computation of Ehrhart Polynomials and its Application in Compile–
Time Generated Cache Hints (Seghir, Verdoolaege, Beyls, and Loechner; 2004)

• Analytical computation of Ehrhart polynomials: Enabling more compiler analy-
ses and optimizations (Verdoolaege, Seghir, Beyls, Loechner, and Bruynooghe;
2004d)

• Experiences with enumeration of integer projections of parametric polytopes
(Verdoolaege, Beyls, Bruynooghe, and Catthoor; 2004a)

• Experiences with enumeration of integer projections of parametric polytopes
(Verdoolaege, Beyls, Bruynooghe, and Catthoor; 2005a)

• Computation and Manipulation of Enumerators of Integer Projections of Para-
metric Polytopes (Verdoolaege, Woods, Bruynooghe, and Cools; 2005b)

• Incremental Loop Transformations and Enumeration of Parametric Sets (Ver-
doolaege; 2005)

• Symbolic Polynomial Maximization over Convex Sets and its Application to
Memory Requirement Estimation (Clauss, Fernández, Gabervetsky, and Ver-
doolaege; 2006)

• Counting with rational generating functions (Verdoolaegeand Woods; 2008)

• Counting integer points in parametric polytopes using Barvinok’s rational func-
tions (Verdoolaege, Seghir, Beyls, Loechner, and Bruynooghe; 2007b)

• Polynomial Approximations in the Polytope Model: Bringingthe Power of Quasi-Poly-
nomials to the Masses (Meister and Verdoolaege; 2008)

• Bounds on Quasi-Polynomials for Static Program Analysis (Devos, Verdoolaege,
Van Campenhout, and Stroobandt; 2007)

• Computing parametric rational generating functions with aprimal Barvinok al-
gorithm (Köppe and Verdoolaege; 2008)

• An Implementation of the Barvinok–Woods Integer Projection Algorithm (Köppe,
Verdoolaege, and Woods; 2008)
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• Algorithms for Weighted Counting over Parametric Polytopes: A Survey and a
Practical Comparison (Verdoolaege and Bruynooghe; 2008)

6.2 Publications Refering to the Library

This is a list of some reports and publications refering to thebarvinok library.

• Theorems of Brion, Lawrence, and Varchenko on rational generating functions
for cones (Beck, Haase, and Sottile; 2005)

• Generating Cache Hints for Improved Program Efficiency (Beyls and D’Hollander;
2005)

• An alternative algorithm for counting lattice points in a convex polytope (Lasserre
and Zeron; 2005)

• Volume Calculation and Estimation of Parameterized Integer Polytopes (Rabl;
2006)

• Improved Derivation of Process Networks (Verdoolaege, Nikolov, and Stefanov;
2006)

• Computing the Ehrhart quasi-polynomial of a rational simplex (Barvinok; 2006)

• Memory Optimization by Counting Points in Integer Transformations of Para-
metric Polytopes (Seghir and Loechner; 2006)

• GRAPHITE: Polyhedral Analyses and Optimizations for GCC (Pop, Silber, Co-
hen, Bastoul, Girbal, and Vasilache; 2006)

• Volume Computation for Polytopes and Partition Functions for Classical Root
Systems. (Baldoni-Silva, Beck, Cochet, and Vergne; 2006)

• A primal Barvinok algorithm based on irrational decompositions (Köppe; 2007)

• pn: A Tool for Improved Derivation of Process Networks (Verdoolaege, Nikolov,
and Stefanov; 2007a)

• On Ehrhart Polynomials and Probability Calculations in Voting Theory (Lepel-
ley, Louichi, and Smaoui; 2008)

• Local Euler-Maclaurin formula for polytopes (Berline and Vergne; 2006)
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Strasbourg, France. [102]

Seghir, R. and V. Loechner (2006, October). Memory optimization by counting
points in integer transformations of parametric polytopes. In Proceedings of the
International Conference on Compilers, Architectures, and Synthesis for Em-
bedded Systems, CASES 2006, Seoul, Korea. [90, 103]

Shoup, V. (2004). NTL. Available fromhttp://www.shoup.net/ntl/. [12]

Stanley, R. P. (1986).Enumerative Combinatorics, Volume 1. Cambridge University
Press. [41]

Stanley, R. P. (1993). A monotonicity property of h-vectorsand h*-vectors.Euro-
pean Journal of Combinatorics 14(3), 251–258. [30]

Tawbi, N. (1994). Estimation of nested loops execution timeby integer arithmetic in
convex polyhedra. InProceedings of the 8th International Parallel Processing
Symposium, pp. 217–221. IEEE Computer Society Press. [51]

Turjan, A., B. Kienhuis, and E. Deprettere (2002, July). A compile time based ap-
proach for solving out-of-order communication in Kahn process networks. In
IEEE 13th International Conference on Aplication-specificSystems, Architec-
tures and Processors (ASAP’2002). [32]

Van Engelen, R. A., K. Gallivan, and B. Walsh (2006, September). Parametric tim-
ing estimation with the Newton-Gregory formulae.Journal of Concurrency and
Computation: Practice and Experience 18(10), 1434–1464. [51, 53]

Verdoolaege, S. (2005, April).Incremental Loop Transformations and Enumeration
of Parametric Sets. Phd, Department of Computer Science, K.U.Leuven, Leu-
ven, Belgium. [8, 10, 11, 12, 14, 16, 17, 21, 24, 27, 50, 56, 57,69, 90, 91, 102]

Verdoolaege, S., K. Beyls, M. Bruynooghe, and F. Catthoor (2004a, October).
Experiences with enumeration of integer projections of parametric polytopes.
Report CW 395, K.U.Leuven, Department of Computer Science.URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW395.abs.html. [102]

Verdoolaege, S., K. Beyls, M. Bruynooghe, R. Seghir, and V. Loechner (2004b,
March). Analytical computation of Ehrhart polynomials andits applications for
embedded systems. In2nd Workshop on Optimization for DSP and Embedded

109



Systems, ODES-2. [102]

Verdoolaege, S., K. Beyls, M. Bruynooghe, R. Seghir, and V. Loech-
ner (2004c, jan). Analytical computation of Ehrhart polynomials and
its applications for embedded systems. Report CW 376, Depart-
ment of Computer Science, K.U.Leuven, Leuven, Belgium. URL=
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW376.abs.html.

[102]

Verdoolaege, S., R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe (2004d,
September). Analytical computation of Ehrhart polynomials: Enabling more
compiler analyses and optimizations. InProceedings of International Confer-
ence on Compilers, Architectures, and Synthesis for Embedded Systems, Wash-
ington D.C., pp. 248–258. [102]

Verdoolaege, S., K. Beyls, M. Bruynooghe, and F. Catthoor (2005a). Experiences
with enumeration of integer projections of parametric polytopes. In R. Bodik
(Ed.), Proceedings of 14th International Conference on Compiler Construc-
tion, Edinburgh, Scotland, Volume 3443 ofLecture Notes in Computer Science,
Berlin, pp. 91–105. Springer-Verlag. [90, 102]

Verdoolaege, S., K. M. Woods, M. Bruynooghe, and R. Cools (2005b). Computation
and manipulation of enumerators of integer projections of parametric polytopes.
Report CW 392, Dept. of Computer Science, K.U.Leuven, Leuven, Belgium.

[102]

Verdoolaege, S., H. Nikolov, and T. Stefanov (2006, March).Improved derivation
of process networks. In4th Workshop on Optimization for DSP and Embedded
Systems, ODES-4. [103]

Verdoolaege, S., H. Nikolov, and T. Stefanov (2007a). pn: A tool for improved
derivation of process networks.EURASIP Journal on Embedded Systems, spe-
cial issue on Embedded Digital Signal Processing Systems 2007. [103]

Verdoolaege, S., R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe (2007b,
June). Counting integer points in parametric polytopes using Barvinok’s rational
functions.Algorithmica 48(1), 37–66. [102]

Verdoolaege, S. and M. Bruynooghe (2008, July). Algorithmsfor weighted counting
over parametric polytopes: A survey and a practical comparison. In M. Beck and
T. Stoll (Eds.),The 2008 International Conference on Information Theory and
Statistical Learning. [103]

Verdoolaege, S. and K. M. Woods (2008). Counting with rational generating func-
tions.J. Symb. Comput. 43(2), 75–91. [90, 102]

Wilde, D. K. (1993). A library for doing polyhedral operations. Technical Report
785, IRISA, Rennes, France.
http://www.irisa.fr/EXTERNE/bibli/pi/pi785.html. [4]

110



Woods, K. M. (2004).Rational Generating Functions and Lattice Point Sets. Ph. D.
thesis, University of Michigan. [88, 97]

Woods, K. M. (2005). Computing the period of an Ehrhart quasi-polynomial.The
Electronic Journal of Combinatorics 12, R34. [89]

Woods, K. M. (2006, June). personal communication. [42]

List of Acronyms

 . . . . . . . . . . . . greatest common divisor

HNF . . . . . . . . . . . Hermite Normal Form

 . . . . . . . . . . . . least common multiple

LLL . . . . . . . . . . . Lenstra, Lenstra and Lovasz’ basis reduction algorithm

PIP . . . . . . . . . . . . Parametric Integer Programming

SNF . . . . . . . . . . . Smith Normal Form

111



Index
--convert, 24–26
--direct, 26
--direction, 29
--enable-fractional, 8
--enable-incremental, 8
--explicit, 24
--floor, 24–26
--gbr, 77
--help, 21
--lower, 28
--omega, 25
--pip, 25
--series, 24, 26
--summation, 27
--variables, 27, 28
--verbose, 27, 28
--version, 21
-?, 21
-V, 21
-c, 24–26
-d, 26, 29
-e, 24
-f, 24–26
-o, 25
-p, 25
-s, 24, 26
-v, 27, 28
4ti2, 76

affine embedding, 43
arr, 5
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