barvinok: User Guide

Version: barvinok-0.27-41-g882c57e

Sven Verdoolaege

September 4, 2008

Contents
Contents

1 Internal Representation of thebarvinok library |

1.1 Existing Data Structures
1.2 OptionsS i e e e
1.3 Data Structures for Quasi-polynomials
1.4 Operations on Quasi-polynomials
1.5 Generating Functionso
1.6 Counting Functions,
1.7 Auxiliary Functions e
1.8 bernstein Data Structures and Functions

2 Applications included in the barvinok distribution

2.1 barvinok count
2.2 barvinok enumerate i e e
2.3 barvinok_enumerate_e
2.4 barvinokunion e

2.5 barvinok ehrhart

2.6 polyhedron sample,
2.7 polytope_SCan v v v v it e e e e
2.8 1exmin
2.9 barvinok,summate\
2.10 barvinok bound o
2.11 polytopeminimize,
2.12 polyhedron_integer hull
2.13 polytope,lattice,widthl

3 polymake clients

4 Omega interface

5 Implementation detail$ 33

5.1 Aninterior pointofapolyhedron 33
5.2 The integer points in the fundamental parallelepipea sifnple cone [33
5.3 Barvinok’s decomposition of simple cones in primal €pac. [35
5.4 Triangulationinprimalspace 140
5.5 Multivariate quasi-polynomials as lists of polynoréial 41
5.6 Leftinverse of anflineembedding. [43
5.7 Integral basis of the orthogonal complement of a linebspace . . . [44
5.8 Ensuring a polyhedron has only reviex-positive rays [44
5.9 Parametric Volume Computation6 4
5.10 Maclaurinseriesdivision 0. a7
5.11 Specialization through exponential substitution [47
5.12 Approximate Enumeration using Nested Sums 51
5.13 Exact Enumeration using Nested SUms 54
5.14 Summation using local Euler-Maclaurin formula [56

5.14.1 Reduction to the summation of a parametric polvnbomr a
parametric polytope with a fixed combinatorial structure .. . [56

5.14.2 Summation over a one-dimensional parametric podyto . . [57
5.14.3 Summation over a two-dimensional parametric ppyta . . [58
5.15 Summation through exponential substitution and Lrstwegpansions . [65
5.16 Conversion to “standard form” [70
5.17 Using TOPCOM to compute Chamber Decompositions [71
5.18 Computing the Hilbert basisofacone [76
5.19 Integer Feasibility [67
5.20 Computing the integer hull of a polyhedron77
5.20.1 Computing the convex hull based on an opt|m|zat|anler .7
5.20.2 Optimization over the integer points of a polyhedron . . . [78
5.21 Computing the integer hull of a truncatedcone [80
5.21.1 Using the Hilbert basisoftheconeLO 8
5.21.2 Using generalized basis reduction [80
5.22 Computing the lattice width of a parametric polytope [83
5.23 Testing whether a set has an infinite number of points (89
5.24 Enumerating integer projections of parametric p(piyﬁ) [90
6 Publications [102
6.1 Publications aboutthe Library 1102
6.2 Publications Refering to the Library [103
104
Inde 112

List of Figures

1.2 The quasi-polynomial [R],p? +3p+ 3/ 6

1.4 The quasi-polynomill + 2{5}) p? +3p+ 3. 10

1.6 Representation ¢8 x2x¢ + 2x8x7) /(1= %X) (1 =) 13
4.1 Extrarelational operationsoéc [32
5.4 The integer points in the fundamental parallelepiped of [34
5.11 Possible locations of the vectar with respect to the rays of a 3-
dimensionalcone. [36
5.17 Examples of decompositions in primal sdace e e [39
5.18 Possible locations &f with respect tay; andu;, projected onto a plane
orthogonal to the other rays, whetw; <0. [40
5.19 Possible locations @f with respect tas; anduj, projected onto a plane
orthogonal to the other rays, wheqw; >0. [40
5.44 Sum of polynomiak; x, over the integer points in atriangle [62
5.58 Theinteger hullof apolytopeo ouo ... 78
5.60 The integer points of a polytope projected on an objedtinction . . [79
5.62 The Hilbert basis and the integer hull of a truncatececon. [81
5.64 Theinteger hullofatruncatedcone 82
5.67 A polytope and its candidate width directons [84
5.69 The cone ofdirectiorS4 [85
5.70 The cone of directionBzy v v v v i i i [86
5.71 TheconeofdirectiorS4q [86
5.72 A polytope and its lattice width directions [87
5.78 A polytope and its integer projections [92
5.80 A transformed polytope and its integer prolectlon e oo 192
5.82 Lattice point free polygon with lattice width 2 . C. (94
5.84 The parametric polytope from Example 5.85 fdfeient values of the
parameter e [98

5.86 The transformed parametric polytope from Example 08B < p<5 (99

1 Internal Representation of thebarvinok library

Ourbarvinok library is built on top ofPolyLib (Wilde 1993; Loechner 1999). In par-
ticular, it reuses the implementations of the algorithm oéthner and Wilde (1997)
for computing parametric vertices and the algorithm of Gsaand Loechner (1998) for
computing chamber decompositions. Initially, our libravgs meant to be a replace-
ment for the algorithm of Clauss and Loechner (1998), alquémented irPolyLib,
for computing quasi-polynomials. To ease the transitioamglication programs we
tried to reuse the existing data structures as much as pessib

1.1 Existing Data Structures

InsidePolyLib integer values are represented by Va@ue data type. Depending on
a configure option, the data type may either by a 32-bit imeyé4-bit integer or an
arbitrary precision integer usin@P. Thebarvinok library requires thaPolyLib is
compiled with support for arbitrary precision integers.

The basic structure for representing (unions of) polyhésieePolyhedron.

typedef struct polyhedron {
unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;
Value **Constraint;
Value **Ray;
Value *p_Init;
int p_Init_size;
struct polyhedron *next;
} Polyhedron;

The attributeDimension is the dimension of the ambient space, i.e., the number of
variables. The attribute®nstraint andRay point to two-dimensional arrays of con-
straints and generators, respectively. The number of restored ifbConstraints
andNbRays, respectively. The number of columns in both arrays is eqpuisiDimension+1.
The first column ofConstraint is either O or 1 depending on whether the constraint
is an equality (0) or an inequality (1). The number of eqiesiis stored ilNbEq. If
the constraint iga, X) + ¢ > 0, then the next columns contain the fit@entsa; and the
final column contains the constamtThe first column oRay is either O or 1 depending
on whether the generator is a line (0) or a vertex or ray (1)e mimber of lines is
stored inNbBid. Letd be the least common multiple (Icm) of the denominators of
the coordinates of a vertex then the next columns contaditv, and the final column
containsd. For a ray, the final column contains 0. The fielekt points to the next
polyhedron in the union of polyhedra. Itgsif this is the last (or only) polyhedron in
the union. For more information on this structure, we reféilde (1993).
Quasi-polynomials are represented usingethelue andenode structures.

typedef enum { polynomial, periodic, evector } enode_type;

typedef struct _evalue {
Value d; /* denominator */

union {

Value n; /* numerator (if denominator !=) */
struct _enode *p; /* pointer (if denominator == @) */
}ox;
} evalue;

typedef struct _enode {

enode_type type; /* polynomial or periodic or evector */
int size; /% number of attached pointers */
int pos; /% parameter position */
evalue arr[1]; /* array of rational/pointer */
} enode;

If the field d of anevalue is zero, then thevalue is a placeholder for a pointer to an
enode, stored inx.p. Otherwise, thevalue is a rational number with numeratarn
and denominatod. An enode is either apolynomial or aperiodic, depending on
the value oftype. The length of the arrayrr is stored insize. For apolynomial,
arr contains the cd@cients. For geriodic, it contains the values for theftirent
residue classes modulo the parameter indicatepoly For a polynomialpos refers
to the variable of the polynomial. The valuemfs is 1 for the first parameter. That is,
if the value ofpos is 1 and the first parameter g and if the length of the array is
then in case itis a polynomial, thewode represents

arr[@]—karr[l]p4—arr[2]p2+~~-+—arr[1—1]p“1
If it is a periodic, then it represents
[arr[@],arr[l],arr[Z],”.,arr[l—l]]p.

Note that the elements of geriodic may themselves be otheeriodics or even
polynomials. In our library, we only allow the elements obariodic to be other
periodics or rational numbers. The chambers and their correspondiasj-polynomial
are stored irEnumeration structures.

typedef struct _enumeration {
Polyhedron *ValidityDomain; /* constraints on the parameters */
evalue EP; /% dimension = combined space */
struct _enumeration *next; /¥ Ehrhart Polynomial,
corresponding to parameter
values inside the domain
ValidityDomain above */
} Enumeration;

For more information on these structures, we refer to Loec(it999).

Example 1.1 Figure[1.2 is a skillful reconstruction of Figure 2 from Ldeer (1999).
It shows the contents of tkeode structures representing the quasi-polynonfiial2] , p?+
3p+3.

enode

type polynomial
size 3
pos 1 enode
arr[0] d 2 type periodic
X.n 5 .
] 1 size 2
arr[1] pos 1
X.n 3 d 1
arr[2] d 0 arr[0] X.n 1
X.p
[1] d 1
arr X.n 2

Figure 1.2: The quasi-polynomial.[2],p? + 3p + g

1.2 Options

Thebarvinok_options structure contains various options that influence the iehav
of the library.

struct barvinok_options {
struct barvinok_stats *stats;

/* PolyLib options */
unsigned MaxRays;

/* NTL options */

/* LLL reduction parameter delta=LLL_a/LLL_b */
long LLL_a;
long LLL_b;

/* barvinok options */

#define BV_SPECIALIZATION_BF 2
#define BV_SPECIALIZATION_DF 1
#define BV_SPECIALIZATION_RANDOM 0
#define BV_SPECIALIZATION_TODD 3

int incremental_specialization;

unsigned long max_index;

int primal;

int lookup_table;

int count_sample_infinite;

int try_Delaunay_triangulation;
#define BV_APPROX_SIGN_NONE 0

#define
#define
#define
int

#define
#define
#define
#define
#define
int

#define
#define
#define
#define
int

#define
#define
#define
int

BV_APPROX_SIGN_APPROX 1
BV_APPROX_SIGN_LOWER 2

BV_APPROX_SIGN_UPPER 3
polynomial_approximation;
BV_APPROX_NONE 0
BV_APPROX_DROP 1
BV_APPROX_SCALE 2
BV_APPROX_VOLUME 3

BV_APPROX_BERNOULLI 4
approximation_method;
BV_APPROX_SCALE_FAST (1 << 0
BV_APPROX_SCALE_NARROW (1 << 1)
BV_APPROX_SCALE_NARROW2 (1 << 2)
BV_APPROX_SCALE_CHAMBER (1 << 3)
scale_flags;
BV_VOL_LIFT 0
BV_VOL_VERTEX 1
BV_VOL_BARYCENTER 2
volume_triangulate;

/* basis reduction options */

#define
#define
#define
int

BV_GBR_NONE 0
BV_GBR_GLPK 1
BV_GBR_CDD 2
gbr_lp_solver;

/* bernstein options */

#define
#define
#define
int

#define
#define
int

#define
#define
#define
#define
#define
int

#define
#define
int

BV_BERNSTEIN_NONE @
BV_BERNSTEIN_MAX 1
BV_BERNSTEIN_MIN -1
bernstein_optimize;

BV_BERNSTEIN_FACTORS
BV_BERNSTEIN_INTERVALS
bernstein_recurse;

N =

BV_LP_POLYLIB 0
BV_LP_GLPK 1
BV_LP_CDD 2
BV_LP_CDDF 3
BV_LP_PIP 4
1p_solver;

BV_HULL_GBR 0
BV_HULL_HILBERT 1

integer_hull;

b
struct barvinok_options *barvinok_options_new_with_defaults();

The functionbarvinok_options_new_with_defaults can be used to create a
barvinok_options structure with default values.

e PolyLib options

— MaxRays

The value oMaxRays is passed to variouglyLib functions and defines
the maximum size of a table used in the double descriptiompabation in
the PolyLib function Chernikova. In earlier versions oPolyLib, this
parameter had to be conservatively set to a high number tar@rssic-
cessful operation, resulting in significant memory oveche@ur change
to allow this table to grow dynamically is available in reteprsions of
PolyLib. In these versions, the value no longer indicates the maxtana
ble size, but rather the size of the initial allocation. Tvadue may be set
to 0 or left as set byarvinok options new with defaults.

e NTL options

— LLL.a

— LLL.b

The values used for the reduction parameter in the caiTtds implemen-
tation of Lenstra, Lenstra and Lovasz’ basis reductionréiiym (LLL).

e barvinok specific options

— incremental_specialization
Selects the specialization algorithm to be used. If séttteen a direct spe-
cialization is performed using a random vector. Valuselects a depth first
incremental specialization, while val@eselects a breadth first incremen-
tal specialization. The default is selected by thenable-incremental
configure option. For more information we refer to Verdoolaege (2005,
Section 4.4.3).

1.3 Data Structures for Quasi-polynomials

Internally, we do not represent our quasi-polynomials ap-giolynomials, but, simi-
larly to Loechner (1999), as polynomials with periodic nuarifor codficients. How-
ever, we also allow our periodic numbers to be representeftaayional parts of
degree-1 polynomials rather than an explicit enumeratgingutheperiodic type.

By default, the current version barvinok usesperiodics, but this can be changed
through the--enable-fractional configure option. In the latter case, the quasi-
polynomial using fractional parts can also be convertedntaual step-polynomial
usingevalue_frac2floor, but this is not fully supported yet.

For reasons of compatibili@/,we shoehorned our representations for piecewise
quasi-polynomials into the existing data structures. Te é¢ffect, we introduced four
new typesfractional, relation, partition andflooring.

typedef enum { polynomial, periodic, evector, fractional,
relation, partition, flooring } enode_type;

The fieldpos is not used in most of these additional types and is therefetréo-1.

The typesfractional andflooring represent polynomial expressions in a frac-
tional part or a floor respectively. The generator is storeakir [0], while the coéi-
cients are stored in the remaining array elements. That im@de of typefractional
represents

arr[l]—karr[Z]{arr[@]}+—arr[3]{arr[®]}2+~--+—arr[1—1]{arr[®]ﬂ‘?
An enode of type flooring represents
arr[l]-karr[Z]Larr[@]J+-arr[3]Larr[®]J2+-‘~+-arr[1-1]Larr[®]ﬂ*?

Example 1.3 The internal representation of the quasi-polynomial
2
(1+2{2 P+ 3p+ 5
is shown in Figure 1.4.

Therelation type is used to represent strides. In particular, if theealisize
is 2, then the value of melation is (in pseudo-code):

(valueCarr[0]) == 0) ? value(arr[1l]) : ®
If the size is 3, then the value is:
(value(Carr[0]) == 0) ? value(arr[1l]) : value(arr[2])

The type ofarr[0] is typically fractional.

Finally, thepartition type is used to represent piecewise quasi-polynomials.
We prefer to encode this information insidgalues themselves rather than using
Enumerations since we want to perform the same kinds of operations ondpgiki-
polynomials and piecewise quasi-polynomials. éupde of type partition may
not be nested inside anothenode. The size of the array is twice the number of
“chambers”. Pointers to chambers are stored in the eves, sibiereas pointer to the
associated quasi-polynomials are stored in the odd slotbeBble to store pointers to
chambers, the definition @fvalue was changed as follows.

typedef struct _evalue {

Value d; /* denominator */
union {
Value n; /* numerator (if denominator > 0) */

1Also known as laziness.

enode enode

type polynomial type fractional
size 3 size 3
pos 1 pos -1
d 2 d 0
arr[0] n c arr[0] XD
d 1 d 1
arr[1] X.n 3 arr[1] X.n 1
d 0 d 1
arr[2] XD arr[2] p_— >
enode
type polynomial
size 2
pos 1
d 1
arr[0] -)
d 2
arr[1] X.n 1

Figure 1.4: The quasi-polynomifl + 2{8}) p? + 3p + 3.

struct _enode *p; /* pointer (if denominator == 0) */
Polyhedron *D; /* domain (if denominator == -1) */
} x;
} evalue;

Note that we allow a “chamber” to be a union of polyhedra asidised in Verdoolaege
(2005, Section 4.5.1). Chambers with extra variables,these of Verdoolaege (2005,
Section 4.6.5), are only partially supported. The figd is set to the actual dimension,
i.e., the number of parameters.

1.4 Operations on Quasi-polynomials

In this section we discuss some of the more important oeraitinevalues provided
by thebarvinok library. Some of these operations are extensions of theifurscfrom
PolyLib with the same name.

void eadd(const evalue *el,evalue *res);
void emul (const evalue *el, evalue *res);

The functionseadd andemul takes two (pointers togvalues el andres and com-
putes their sum and product respectively. The result igdtorres, overwriting (and
deallocating) the original value aks. It is an error if exactly one of the arguments of

10

eadd is of typepartition (unless the other argumentis The addition and multipli-
cation operations are described in Verdoolaege (2005idBett5.1) and Verdoolaege
(2005, Section 4.5.2) respectively.

The functioneadd is an extension of the functiamew_eadd from Seghir (2002).
Apart from supporting the additional types from Section| kt& new version also
additionally imposes an order on the nesting dfadentenodes. Without such an
ordering,evalues could be constructed representing for example

Oy + (0x° + 1x)y")x + (0y° - 1yh)x,
which is just a funny way of saying 0.
void eor(evalue *el, evalue *res);

The functioneor implements the union operation from Verdoolaege (2005ti&e4.5.3).
Both arguments are assumed to correspond to indicatorifunsct

evalue *esum(evalue *E, int nvar);
evalue *evalue_sum(evalue *E, int nvar, unsigned MaxRays);

The functionesum has been superseded byalue_sum. The functionevalue_sum
performs the summation operation from Verdoolaege (2088&tiéh 4.5.4). The piece-
wise step-polynomial represented bys summated over its firstvar variables. Note
thatE must be zero or of typpartition. The function returns the result in a newly
allocatedevalue. Note also thakE needs to have been converted frdractionals

to floorings using the functiomvalue_frac2floor.

void evalue_frac2floor(evalue *e);

This function also ensures that the arguments offih@orings are positive in the
relevant chambers. It currently assumes that the argunfieatohfractional in the
original evalue has a minimum in the corresponding chamber.

double compute_evalue(const evalue *e, Value *list_args);
Value *compute_poly(Enumeration *en,Value *list_args);
evalue *evalue_eval(const evalue *e, Value *values);

The functionscompute_evalue, compute_poly andevalue_eval evaluate a (piece-
wise) quasi-polynomial at a certain point. The argumkidt_args points to an
array of Values that is assumed to be long enough. Towable return value of
compute_evalue is inherited fromPolyLib.

void print_evalue(FILE *DST, const evalue *e, char **pname);

The functionprint_evalue dumps a human-readable representation to the stream
pointed to byDST. The argumenpname points to an array of character strings repre-
senting the parameter names. The array is assumed to beriongle

int eequal(const evalue *el, const evalue *e2);

11

The functioneequal return true {) if its two arguments are structurally identical. l.e.,
it doesnot check whether the two (piecewise) quasi-polynomial regmethe same
function.

void reduce_evalue (evalue *e);

The functionreduce_evalue performs some simplifications afvalues. Here, we
only describe the simplifications that are directly relatethe internal representation.
Some other simplifications are explained in Verdoolaeg@%2&ection 4.7.2). If the
highest order cdéicients of apolynomial, fractional or flooring are zero (pos-
sibly after some other simplifications), then the size ofdhmy is reduced. If only
the constant term remains, i.e., the size is reduced to gofbynomial or to 2 for the
other types, then the whole node is replaced by the congtamt tAdditionally, if the
argument of &ractional has been reduced to a constant, then the whole node is re-
placed by its partial evaluation. Aelation is similarly reduced if its second branch
or both its branches are zero. Chambers with zero assodagesi-polynomials are
discarded from @artition.

1.5 Generating Functions

The representation of rational generating functions usesesbasic types from the
NTL library (Shoup 2004) for representing arbitrary precisioegers £z) as well as
vectors {ec_zZZ) and matricesnfat_zZ) of such integers. We further introduces a type
QQ for representing a rational number and use vectogs QQ) of such numbers.

struct QQ {
ZZ n;
ZZ d;
b

NTL_vector_decl(QQ,vec_QQ);
Each term in arational generating function is represenyexshort _rat structure.

struct short_rat {
struct {
/* rows: terms in numerator */
vec_QQ coeff;
mat_ZZ power;
} n;
struct {
/* rows: factors in denominator */
mat_ZZ power;
} d;
b

The fieldsn andd represent the numerator and the denominator respectietg that
in our implementation we combine terms with the same denatoinin the numerator,

12

short_rat

n.coeff | 3| 2
21
n.power | 2 3
51 -7
d.power | 1 | -3
0| 2

Figure 1.6: Representation 0 x2x + 2x5x.7) / (1 - xox%)(1 -).

each element ofoeff and each row opower represents a single such term. The
vectorcoeff contains the rational céigcientsq; of each term. The columns pbwer
correspond to the powers of the variables. In the denominatxh row ofpower
corresponds to the powey; of a factor in the denominator.

Example 1.5 Figure/1.6 shows the internal representation of
298 + 2%
(1-%x) (1~ X))

The whole rational generating function is represented ggrafun structure.

typedef std::set<short_rat *,
short_rat_lex_smaller_denominator > short_rat_list;

struct gen_fun {
short_rat_list term;
Polyhedron *context;

void add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den);
void add(short_rat *r);
void add(const QQ& c, const gen_fun *gf,

barvinok_options *options);
void substitute(Matrix *CP);
gen_fun *Hadamard_product(const gen_fun *gf,

barvinok_options *options);
void print(std::ostream& os,
unsigned int nparam, char **param_name) const;

operator evalue *() const;
ZZ coefficient(Value* params, barvinok_options *options) const;
void coefficient(Value* params, Value* c) const;

gen_fun(Polyhedron *C);
gen_fun(Value c);

13

gen_fun(const gen_fun *gf);
“gen_fun(Q);
1

A newgen_fun can be constructed either as empty rational generatingiumossi-

bly with a given context), as a copy of an existing rational generating functiédnor

as constant rational generating function with value fordiestant term specified lay
The firstgen_fun: : add method adds a new term to the rational generating function,
described by the cdiécient c, the numeratonum and the denominataten. It makes

all powers in the denominator lexico-positive, orders thiehexicographical order and
inserts the new term imerm according to the lexicographical order of the combined
powers in the denominator. The secajesh_fun: :add method adds timesgf to the
rational generating function.

The methodgen_fun: :operator evalue * performs the conversion from rational
generating function to piecewise step-polynomial exm@éiim Verdoolaege (2005, Sec-
tion 4.5.5). ThePolyhedron context is the superset of all points where the enumera-
tor is non-zero used during this conversion, i.e., it is gt€Xxfrom Verdoolaege (2005,
Equation 4.31). lkcontext is NULL the maximal allowed context is assumed, i.e., the
maximal region with lexico-positive rays.

The methodyen_fun: : coefficient computes the cdicient of the term with power
given byparams and stores the result in This method performs essentially the same
computations agen_fun: :operator evalue *, except that it adds extra equality
constraints based on the specified values for the power.

The methodyen_fun: : substitute performs the monomial substitution specified by
the homogeneous matr@P that maps a set of “compressed parameters” (Meister 2004)
to the original set of parameters. That is, if we are giventimmal generating func-
tion G(2) that encodes the explicit functiaii’), wherei’ are the coordinates of the
transformed space, ar@® represents the map= Ai’ + a back to the original space
with coordinates, then this method transforms the rational generating fando F(x)
encoding the same explicit functiditi), i.e.,

f(@i) = f(A’ +a) = g(i").
This means that the cfiwient of the termx' = x4+ in F(x) should be equal to the

codficient of the terne” in G(2). In other words, if

Vi

z
G(Z) = Z Eim

then
XAVi +a

F(X) = Z Eim.

The methodgen_fun: :Hadamard product computes the Hadamard product of the
current rational generating function with the rational gting functiongf, as ex-
plained in Verdoolaege (2005, Section 4.5.2).

14

1.6 Counting Functions

Our library provides essentially thrediirent counting functions: one for non-parametric
polytopes, one for parametric polytopes and one for pamdenstts with existential
variables. The old versions of these functions havéaRays” argument, while the
new versions have a more gendsakvinok options argument. For more informa-
tion onbarvinok_options, see Section 1]2.

void barvinok_count (Polyhedron *P, Value* result,
unsigned NbMaxCons) ;
void barvinok_count_with_options(Polyhedron *P, Value* result,
struct barvinok_options *options);

The functionbarvinok_count or barvinok_count_with_options enumerates the
non-parametric polytopP and returns the result in thlue pointed to byresult,
which needs to have been allocated and initialize#.i¢fa union, then only the first set
in the union will be taken into account. For the meaning ofafgumentibMaxCons,
see the discussion dfaxRays in Sectior 1.2.

The functionbarvinok_enumerate for enumerating parametric polytopes was
meant to be a drop-in replacementRaflyLib’s Polyhedron_Enumerate function.
Unfortunately, the latter has been changed to accept aa axjument in recent ver-
sions ofPolyLib as shown below.

Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C,
unsigned MaxRays);
extern Enumeration *Polyhedron_Enumerate(Polyhedron *P,
Polyhedron *C, unsigned MAXRAYS, char **pname);

The argumenMaxRays has the same meaning as the argunm¥iaxCons above.
The argumenp refers to the d + n)-dimensional polyhedron defining the parametric
polytope. The argumerttis ann-dimensional polyhedron containing extra constraints
on the parameter space. Its primary use is to indicate how e dimensions in

P refer to parameters as any constrainCinould equally well have been addedRo
itself. Note that the dimensions referring to the paransetbould appedast. If either

P or C is a union, then only the first set in the union will be takemiatcount. The
result is a newly allocateBhumeration. As an alternative we also provide a function
(barvinok_enumerate_ev or barvinok enumerate_with _options) that returns an
evalue.

evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C,
unsigned MaxRays);
evalue* barvinok_enumerate_with_options(Polyhedron *P,
Polyhedron* C, struct barvinok_options *options);

For enumerating parametric sets with existentially quieativariables, we provide
two functions:barvinok_enumerate_e andbarvinok_enumerate_pip.

evalue* barvinok_enumerate_e(Polyhedron *P,
unsigned exist, unsigned nparam, unsigned MaxRays);

15

evalue* barvinok_enumerate_e_with_options(Polyhedron *P,
unsigned exist, unsigned nparam,
struct barvinok_options *options);
evalue *barvinok_enumerate_pip(Polyhedron *P,
unsigned exist, unsigned nparam, unsigned MaxRays);
evalue* barvinok_enumerate_pip_with_options(Polyhedron *P,
unsigned exist, unsigned nparam,
struct barvinok_options *options);
evalue *barvinok_enumerate_scarf(Polyhedron *P,
unsigned exist, unsigned nparam,
struct barvinok_options *options);

The first function tries the simplification rules from Verdaege (2005, Section 4.6.2)
before resorting to the method based on Parametric Integgrd&dnming (PIP) from
Verdoolaege (2005, Section 4.6.3). The second functionddiately applies the tech-
nigue from Verdoolaege (2005, Section 4.6.3). The argurmeitt refers to the num-
ber of existential variables, whereas the argunmpatram refers to the number of pa-
rameters. The order of the dimension®irs: counted variables first, then existential
variables and finally the parameters. The funcbamvinok_enumerate_scarf per-
forms the same computation as the functletrvinok enumerate _scarf series
below, but produces an explicit representation insteadgefreerating function.

gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C,
unsigned MaxRays);
gen_fun * barvinok_series_with_options(Polyhedron *P,
Polyhedron* C, barvinok_options *options);
gen_fun *barvinok_enumerate_e_series(Polyhedron *P,
unsigned exist, unsigned nparam,
barvinok_options *options);
gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,
unsigned exist, unsigned nparam,
barvinok_options *options);

The functiorbarvinok_series orbarvinok_series_with_options enumerates para-
metric polytopes in the form of a rational generating fuoicti The polyhedro® is
assumed to have only revlex-positive rays.

The functionbarvinok_enumerate_e_series computes a generating function for the
number of point in the parametric set definedPbyith exist existentially quantified
variables using the projection theorem, as explained isettipn 5.24. The function
barvinok_enumerate_scarf_series computes a generating function for the number
of point in the parametric set defined Pyvith exist existentially quantified variables,
which is assumed to be 2. This function implements the teglenof Scarf and Woods
(2006) using the neighborhood complex description of Sd@81). It is currently re-
stricted to problems with 3 or 4 constraints involving théseentially quantified vari-
ables.

16

1.7 Auxiliary Functions

In this section we briefly mention some auxiliary functiorgitable in thebarvinok
library.

void Polyhedron_Polarize(Polyhedron *P);

The functiorPolyhedron_Polarize polarizes its argument and is explained in Verdoolaege
(2005, Section 4.4.2).

int unimodular_complete(Matrix *M, int row);

The functionunimodular_complete extends the firstow rows of M with an integral
basis of the orthogonal complement as explained in SectidnPBeturns non-zero if
the resulting matrix is unimodular.

int DomainIncludes(Polyhedron *D1, Polyhedron *D2);

The functionDomainIncludes extends the functioRolyhedronIncludes provided
by PolyLib to unions of polyhedra. It checks whether every polyhedrothé union
D2 is included in some polyhedron Dfi.

Polyhedron *DomainConstraintSimplify(Polyhedron *P,
unsigned MaxRays);

The value returned bjomainConstraintSimplify is a pointer to a newly allocated
Polyhedron that contains the same integer points as its first argumempdssibly has
simpler constraints. Each constrag{f, x) > c is replaced bya, x) > [g] whereg

is the greatest common divisor (gcd) of the fméents in the original constraint. The
Polyhedron pointed to byP is destroyed.

Polyhedron* Polyhedron_Project(Polyhedron *P, int dim);

The functionPolyhedron Project projectsP onto its lasidim dimensions.

Matrix *left_inverse(Matrix *M, Matrix **Eq);

Theleft_inverse function computes the left inverse whs explained in Section 5.6.

Matrix *Polyhedron_Reduced_Basis(Polyhedron *P,
struct barvinok_options *options);

Polyhedron Reduced_Basis computes a generalized reduced basi, @fhich is as-
sumed to be a polytope, using the algorithm of Cook et al. §1.99ee subsection 5.19
for more information. The basis vectors are stored in thesrofthe matrix returned.

Vector *Polyhedron_Sample(Polyhedron *P,
struct barvinok_options *options);

Polyhedron_Sample returns an integer point &f or NULL if P contains no integer
points. The integer point is found using the algorithm of Ket al. (1993) and uses
Polyhedron_Reduced_Basis to compute the reduced bases. See subsection 5.19 for
more information.

17

1.8 bernstein Data Structures and Functions

Thebernstein library usedsiNaC data structures to represent the data it manipulates.
In particular, a polynomial is stored in@.NaC: : ex, a list of variable or parameter
names is stored in@iNacC: : exvector, while the parametric vertices or generators are
stored in &GiNaC: :matrix, where the rows refer to the generators and the columns to
the coordinates of each generator.

namespace bernstein {
GiNaC::exvector constructParameterVector(
const char * const *param_names, unsigned nbParams);
GiNaC: :exvector constructVariableVector(unsigned nbVariables,
const char *prefix);

}

The functionsconstructParameterVector andconstructVariableVector con-
struct a list of variable names either from a lisichfir *s or by suffixing prefix with
a number starting from 0. Such lists are needed for the fonstiomainVertices,
bernsteinExpansion andevalue_bernstein_coefficients.

namespace bernstein {
GiNaC::matrix domainVertices(Param_Polyhedron *PP, Param_Domain *Q,
const GiNaC::exvector& params);

}

The functiondomainVertices constructs a matrix representing the generators (in this
case vertices) of thearam Polyhedron PP for the Param Domain Q, to be used in

a call tobernsteinExpansion. The elements oparams are used in the resulting
matrix to refer to the parameters.

namespace bernstein {

GiNaC::1st bernsteinExpansion(const GiNaC::matrix& vert,
const GiNaC::ex& poly,
const GiNaC::exvector& vars,
const GiNaC::exvector& params);

}

The functionbernsteinExpansion computes the Bernstein déieients of the poly-
nomialpoly over the parametric polytope that is the convex hull of thvesrin vert.

The vectorsrars andparams identify the variables (i.e., the coordinates of the space
in which the parametric polytope lives) and the parametespectively.

namespace bernstein {
typedef std::pair< Polyhedron *, GiNaC::1lst > guarded_lst;

struct piecewise_lst {
const GiNaC::exvector vars;

18

std: :vector<guarded_lst> list;
/% 0: just collect terms
1: remove obviously smaller terms (maximize)
* -1: remove obviously bigger terms (minimize)
*/

int sign;

piecewise_lst(const GiNaC::exvector& vars);
piecewise_lst& combine(const piecewise_lst& other);
void maximize();
void simplify_domains(Polyhedron *ctx, unsigned MaxRays);
GiNaC: :numeric evaluate(const GiNaC::exvector& values);
void add(const GiNaC::ex& poly);

}

3

A piecewise_list structure represents a list of (disjoint) polyhedral damaeach
with an associatediNaC: : 1st of polynomials. Thevars member contains the vari-
able names of the dimensions of the polyhedral domains.
piecewise_lst::combine computes the common refinement of the polyhedral do-
mains inthis andother and associates to each of the resulting subdomains the union
of the sets of polynomials associated to the domains fthis andother that contain
the subdomain. If theigns of thepiecewise_1ists are not zero, then the (obvi-
ously) redundant elements of these sets are removed fromnilba. The result is
stored inthis.

piecewise_lst::maximize removes polynomials from domains that evaluate to a
value that is smaller than or equal to the value of some otblgnpmial associated to
the same domain for each point in the domain.

piecewise_lst::evaluate “evaluates” theiecewise_list by looking for the do-
main (if any) that contains the point given lplues and computing the maximal
value attained by any of the associated polynomials eveduat that point.
piecewise_lst: :add adds the polynomialoly to each of the polynomial associated
to each of the domains.

piecewise_lst::simplify domains “simplifies” the domains by removing the con-
straints that are implied by the constraintsdnx, basically by callingPolyLib’s
DomainSimplify. Note that you should only do this at the end of your compaorteatin
particular, you do not want to call this method before cglpiecewise_1st: :maximize,
since this method will then have less information on the dameb exploit.

namespace barvinok {

bernstein: :piecewise_lst *evalue_bernstein_coefficients(
bernstein: :piecewise_lst *pl_all, evalue *e,
Polyhedron *ctx, const GiNaC::exvector& params);

bernstein: :piecewise_lst *evalue_bernstein_coefficients(
bernstein::piecewise_lst *pl_all, evalue *e,

19

Polyhedron *ctx, const GiNaC::exvector& params,
barvinok_options *options);

}

The evalue bernstein_coefficients function will compute the Bernstein coef-
ficients of the piecewise parametric polynomial stored methalue e. Theparams

vector specifies the names to be used for the parameters, tvbitontexPolyhedron

ctx specifies extra constraints on the parameters. The dinreokiax needs to be the

same as the length phirams. Theevalue e is assumed to be of typeartition and

each of the domains in thigartition is interpreted as a parametric polytope in the
given parameters. The procedure will compute the Bernstadficients of the associ-

ated polynomial over each such parametric polytope. Thdtiegbernstein: :piecewise_1st
collects the Bernstein céiicients over all parametric polytopesén If p1_all is not

NULL then this list will be combined with the list computed by tadlpiecewise_1st: : combine.
If bernstein_optimize is set toBV_BERNSTEIN_MAX in options, then this combi-

nation will remove obviously redundant Bernstein fméents with respect to upper

bound computation and similarly fBV_BERNSTEIN _MIN. The defaultEV_BERNSTEIN_NONE)

is to only remove duplicate Bernstein dbeients.

20

2 Applications included in the barvinok distribution

This section describes some application programs provigetiebarvinok library,
available fromhttp://freshmeat.net/projects/barvinok/. For compilation
instructions we refer to thREADME file included in the distribution.
Common option to all programs:
--version -V printversion
--help -? list available options

2.1 barvinok_count

The progranmbarvinok_count enumerates a non-parametric polytope. It takes one
polytope inPolyLib notation as input and prints the number of integer points in
the polytope. ThePolyLib notation corresponds to the internal representation of
Polyhedrons as explained in Section 1.1. The first line of the input dostthe num-
ber of rows and the number of columns in thenstraint matrix. The rest of the
input is composed of the elements of the matrix. Recall thatnmumber of columns

is two more than the number of variables, where the extradoistmns is one or zero
depending on whether the constraint is an inequalityp) or an equality £ 0). The
next columns contain the cfiients of the variables and the final column contains the
constant in the constraint. E.g., the St {s| s> 0 A 2s< 13} from Verdoolaege
(2005, Example 38 on page 134) corresponds to the followipgtiand output.

> cat S
23

110
1-213
> ./barvinok_count < S
POLYHEDRON Dimension:1
Constraints:2 Equations:® Rays:2 Lines:0

Constraints 2 3
Inequality: [1 0]
Inequality: [-2 13]
Rays 2 3
Vertex: [0 1/1
Vertex: [13]1/2

7

Note that if you us@olyLib version 5.22.0 or newer then the output may look slightly
different as the computation of tReys may have been postponed to a later stage. The
programlatte2polylib.pl can be used to convert a polytope fraax tE (De Loera
et al. 2003) notation tBolyLib notation.

As an alternative to the constraints based input, the inpiytgpe may also be spec-
ified by itsRay matrix. The first line of the input contains the single wokd-tices.
The second line contains the number of rows and the numbeslofns in theRay
matrix. The rest of the input is composed of the elements efntlatrix. Recall that

21

the number of columns is two more than the number of variallasre the extra first
columns is one or zero depending on whether the ray is a linetoiThe next columns
contain the numerators of the coordinates and the final aoktontains the denomina-
tor of the vertex or O for a ray. E.g., the above set can alsaeberibed as

vertices

2.2 barvinok_enumerate

The progranbarvinok_enumerate enumerates a parametric polytope as a piecewise
step-polynomial or rational generating function. It take® polytopes inPolyLib
notation as input, optionally followed by a list of paranmratames. The two polytopes
refer to argument® and C of the corresponding function. (See Section] 1.6.) The
following example was taken by Loechner (1999) from Loect{#®97, Chapter 11.2).

> cat loechner

Dimension of the matrix:
77

Constraints:

#1 j k P Q cte
1100000#0<=1
1-100100#1i<=P
1010000 #0 <=3
11-10000#j <=1
1001000#0<=k
11-1-1000#Kk«<=1i-j
01110-10#Q=1+3+k

2 parameters, no constraints.
04
> ./barvinok_enumerate < loechner
POLYHEDRON Dimension:5
Constraints:6 Equations:1 Rays:5 Lines:0
Constraints 6 7

Equality: [1 1 1 0 -1 0]
Inequality: [® 1 1 1 -1 0]
Inequality: [® 1 0 6 0 0]
Inequality: [O O 1 0 0 0]
Inequality: [0 -2 -2 0 1 0]
Inequality: [0 0 0 0 0 1]
Rays 5 7

Ray: [1 0 1 1 2]

22

Ray: [1 1 0 1 2]
Vertex: [O 06 o o0 ©017]/1
Ray: [0 0 O 1 0]
Ray: [1 0 © 1 1]

POLYHEDRON Dimension:2

Constraints:1 Equations:0 Rays:3 Lines:2
Constraints 1 4
Inequality: [0 0 1]
Rays 3 4
Line: [1 0]
Line: [0 1]
Vertex: [0 0 1]

(-1/2 *P"2+ (1*Q+ 1/2)
*P+ (-3/8*Q°2+ (-1/2* {(1/2 *Q+0)
}+1/4)
*Q+ (-5/4 % {C1/2%Q+0)
}+1)
)
)

Q >=0

P-Q -1>=0

1>=0

(1/8 * Q2+ (C-1/2* {(1/2*Q+0)
}+3/4)

Q+ (-5/4 {(1/2*Q+0)

}+ 1)

)

The output corresponds to

-1P2+ PQ+ 3P- Q2+ (- 3{3Q))Q+1-3{iQ}
if P<Q<2P
1Q+(3-1{3Qh)-3{d fo<Q<P-1
The following is an example of Petr Lisék.

> cat petr

46
1-1-1-110
11-1000
101-100
10010 -1

23

03
n
> ./barvinok_enumerate --series < petr
POLYHEDRON Dimension:4
Constraints:5 Equations:0®0 Rays:5 Lines:0
Constraints 5 6

Inequality: [-1 -1 -1 1 0]
Inequality: [1 -1 0 6 0]
Inequality: [O 1 -1 0 0]
Inequality: [0 0 1 0 -11]
Inequality: [0 0 0 0 1]
Rays 5 6

Ray: [1 1 1 3]

Ray: [1 1 0 2]

Ray: [1 0 © 1]

Ray: L 0 0 0 1]

Vertex: [1 1 1 3 1]/1

POLYHEDRON Dimension:1
Constraints:1 Equations:® Rays:2 Lines:1
Constraints 1 3
Inequality: [0 1]
Rays 2 3
Line: L 1]
Vertex: [0 1/1
(n"3)/((1-n) * (1-n) * (1-n"2) * (1-n"3))

Options:
--floor -f convertfractionals tofloorings
--convert -c convertfractionals toperiodics
--series -s compute rational generating function instead of piecewise

step-polynomial
--explicit -e convert computed rational generating function to a piesewi
step-polynomial

2.3 barvinok_enumerate_e

The progranbarvinok_enumerate_e enumerates a parametric projected set. It takes
a single polytope irPolyLib notation as input, followed by two lines indicating the
number or existential variables and the number of parametat optionally followed

by a list of parameter names. The syntax for the line indicgtihe number of existen-
tial variables is the lettek followed by a space and the actual number. For indicating
the number of parameters, the letpeis used. The following example corresponds to
Verdoolaege (2005, Example 36 on page 129).

> cat projected
56

24

k i j
1 6 1 ©
1 6 -1 0
1 0 060 1
1 0 0 -1
® -1 6 9
E 2

P1

p cst
0 -1
® 8
o -1
1 0
0 -7

> ./barvinok_enumerate_e <projected
POLYHEDRON Dimension:4
Constraints:5 Equations:1 Rays:4 Lines:0

Constraints 5 6

Equality: [1 -6 -9 0 7 1]
Inequality: [0 1 0 0 -171]
Inequality: [0 -1 0 0 8]
Inequality: [0 0 0 -11]
Inequality: [0 0 -1 1 0]
Rays 4 6
Vertex: [50 8 1 11]/1
Ray: [0 0 0 1]
Ray: [9 0 1 1]
Vertex: [8 1 1 11]/1
exist: 2, nparam: 1

P -3>=0

1 >=

(3*P+10)

P -1>=0

-P+2>=0

(8*P+0)

Options:
--floor -f
--convert -C
--omega -0
--pip -p

convertfractionals to floorings
convertfractionals toperiodics
useOmega as a preprocessor

call barvinok_enumerate_pip instead of
barvinok_enumerate_e

2.4 barvinok_ union

The progranbarvinok_union enumerates a union of parametric polytopes. It takes as
input the number of parametric polytopes in the union, tHgtppes in combined data
and parameter spacelolyLib notation, the context in parameter spac@diyLib
notation and optionally a list of parameter names.

25

Options:
--series -s compute rational generating function instead of piecewise
step-polynomial

2.5 barvinok_ehrhart

The progranbarvinok_ehrhart computes the Ehrhart quasi-polynomial of a poly-
topeP, i.e., a quasi-polynomial in that evaluates to the number of integer points in the
dilation of P by a factorn. The input is the same as thatledrvinok_count, except
that it may be followed by the variable name. The functidgasi the same as running
barvinok_enumerate on the cone oveP placed an = 1.

Options:
--floor -f convertfractionals tofloorings
--convert -c convertfractionals toperiodics
--series -s compute Ehrhart series instead of Ehrhart quasi-polyniomia

2.6 polyhedron_sample

The progranpolyhedron_sample takes a polytope iRolyLib notation and prints an
integer pointin the polytope if there is one. The pointis pomed usindPolyhedron_Sample.

2.7 polytope_scan

The progranpolytope_scan takes a polytope iRolyLib notation and prints a list of
all integer points in the polytope. Unless thedirect options is given, the order is
based on the reduced basis computed ®éthyhedron Reduced Basis.
Options:
--direct -d listthe points in the lexicographical order

2.8 lexmin

The programlexmin implements an algorithm for performing PIP based on rationa
generating functions and provides an alternative for thirtejue of Feautrier (1988),
which is based on cutting planes (Gomory 1963). The inputéssame as that of the
example program frompiplib (Feautrier 2006), except that the value for the “big
parameter” needs to bel, since there is no need for big parameters, and it does not
read any options from the input file.

2.9 barvinok summate

Given a piecewise quasi-polynomial, the prograarvinok_summate computes the
sum of the piecewise quasi-polynomial evaluated in alke@er) values of a subset of
the variables. The result is an expression in the remairanigbles.

The input format corresponds to tbetputformat of barvinok_enumerate and
barvinok_enumerate_e. Thatis, the program expects a list of guarded quasi-poiyals.
Each guarded quasi-polynomial consists of a domain andsi-gpotynomial, separated

26

by an empty line. The domain is specified as a list of conssagach on a separate
line, consisting of an fiine expression in the variables followed by 0. Use the
--verbose option to check that your input was parsed correctly. Theoligguarded
quasi-polynomials may be preceded by a line specifying Hr@kles over which to
sum as#variables followed by a comma separated list of variable names.

For example

> cat square_p3
#variables x,y

X -2>=0

-3x +n+ 9>=0
y -4 >=0

-y +5 >=0

x:':y

> ./barvinok_summate < square_p3
n+3>0
-n -1>=0

18 n >=0
1>=0

(1/2*n"2+ (-3*{C1/3*n+0)
} o+ 21/2)

n+ (9/2 {(1/3*n+20)

172 + -63/2 * {(1/3 *n + 0)

} + 45)
)
Options:
--variables comma separated list of variables over which to sum
--verbose -v print parsed piecewise quasi-polynomial
--summation specifies which summation method to usex refers to the

method of Verdoolaege (2005, Section 4.5H¢rnoulli

refers to the method df subsection 5.18iler refers to
the method of subsection 5.14, ahdurent refers to the
method of subsection 5.15.

2.10 barvinok_bound

Given a piecewise quasi-polynomial, the progreatrvinok bound computes an up-
per bound (or lower bound) for the values attained by thegpigse quasi-polynomial
over all (integer) values of a subset of the variables. Thaltés an expression in the
remaining variables.

The input format corresponds to tbhetputformat of barvinok_enumerate and
barvinok_enumerate_e. Thatis, the program expects a list of guarded quasi-poiyals.
Each guarded quasi-polynomial consists of a domain andsi-poéynomial, separated

27

by an empty line. The domain is specified as a list of conssagach on a separate
line, consisting of an fiine expression in the variables followed by 0. Use the
--verbose option to check that your input was parsed correctly. Theoligguarded
quasi-polynomials may be preceded by a line specifying Hr@kles over which to
compute the upper bound #gariables followed by a comma separated list of vari-
able names.

> cat devos
#variables V
U+2V+3>=0

- U -2V >=0
-U 10 >= 0
U >=20

({C1/3*U+(C2/3*V+0))1)
> ./barvinok_bound < devos
(1%U >= 0 && -1*U + 10 >= 0) ? ((2.06/3.0)) : O

Options:
--variables comma separated list of variables over which to compute a
bound
--verbose -v print parsed piecewise quasi-polynomial
--lower compute lower bound instead of upper bound

2.11 polytopeminimize

The progranpolytope minimize takes a polytope iRolyLib notation and a linear
objective function as input and prints an integer point eplolytope attaining the min-
imial value of the objective function. The objective fumetiis specified as the length
of the vector (the number of variables) followed by the fic&nts of the variables.
The point is computed as explained in subsubsection 5.20.2.

For example

> cat min_test

8 8
1 34 0 0 0 1 0 0
1 0 -82 -1 0 0 0 0
1 0 -82 0 0 0 -1 0
1 0 31 0 0 1 0 0
1 0 0 0 2 -3 0 0
1 0 0 0 0 -1 0 0
1 0 0 0 0 0 0 1
1 -34 4676 34 -34 21 34 34

6

34 -4676 -34 34 -21 -34
> ./polytope_minimize < min_test

28

2 2 -164 -93 -62 -164 1

2.12 polyhedron_integer_hull

The programpolyhedron_integer_ hull takes a polyhedron iBolyLib notation
and prints its integer hull. The integer hull is computedxad&ned in subsection 5.20.

2.13 polytope_lattice_width

The progranpolytope_lattice width computes the lattice width of a parametric
polytope. The input is the same as thabatvinok_enumerate. The lattice width is
computed as explained|in subsection 5.22.
Options:
--direction -d printthe lattice width directions

29

3 polymake clients

The barvinok distribution includes a couple qfolymake (Gawrilow and Joswig
2000) clients in th@olymake subdir.
e lattice_points <file>
Computes the propertyATTICE_POINTS of a polytope, the number of lattice
points in the polytope.
e h star vector <file>

Computes the properti, STAR_VECTOR of a lattice polytope, tha*-vector of the
polytope (Stanley 1993).

30

4 Omega interface

The barvinok distribution includes an interface timega (Kelly et al. 1996b)occ,
an extension obc (Kelly et al. 1996a). The extension adds the operations sHow
Figure 4.1. Here are some examples:

symbolic n, m;
P:={[i,j] : 09<=i<=nandi<=j<=m};
card P;

P :={[i,j] : ® <=1 <4"n-1and ® <= j < n and
n-1 <= i+j <= 3*n-2 };
Cl := {[i,j] : ® <=1 < 4*n-1 and 0 <= j < n and
2*n-1 <= i+j <= 4*n-2 and i <= 2*n-1 };
count_lexsmaller P within C1;
vertices Cl;
bmax { [i] -> 2*n*i - n*n + 3*n - 1/2%i*i - 3/2%i-1 :
(exists j : ® <=1 < 4*n-1 and 0@ <= j < n and

2*n-1 <= i+j <= 4*n-2 and i <= 2*n-1) };

sum { [i,j] > i*j + n*i*i*j : i,j >= 0 and 5i + 27j <= n+m };

31

Name Syntax

Explanation

Card cardr

Card card r using
parker

Ranking ranking r

Predecessors count_lexsmaller
r withind

\ertices verticesr

Bernstein bmax f

Sum sum f

Computes the number of integer pointgin
and prints the result to standard output
Computes the number of integer points in
r and prints the result to standard output
using the method of Parker and Chatterjee
(2004)

Computes the rank function ofand prints
the result to standard output (Loechner
et al. 2002; Turjan et al. 2002)

Computes a function from the elements of
d to the number of elements ofthat are
lexicographically smaller than that element
and prints the result to standard output.
Computes the parametric verticeg afsing
PolyLib (Loechner 1999).

Computes the Bernstein dheients of
the function f over its domain and re-
moves the redundant cieients by calling
piecewise_lst::maximize. The results
are printed to standard output. See the ex-
ample for how to specify the functioh
Computes the sum of the given poly-
nomial f over its domain using
barvinok_summate.

Figure 4.1: Extra relational operationsafc

32

5 Implementation details

5.1 Aninterior point of a polyhedron

We often need a point that lies in the interior of a polyhedifime functioninner _point
implements the following algorithm. Each polyhedm®mran be written as the sum of
a polytopeP’ and a coné& (the recession cone or characteristic con@pfAdding a
positive multiple of the sum of the extremal raysfo the barycenter

1
N 2 vio)
I
of P’, whereN is the number of vertices, results in a point in the interioPo

5.2 The integer points in the fundamental parallelepiped of asim-
ple cone

This section is based on Barvinok (1992, Lemma 5.1) and DesLaed Koppe (2006).

In this section we will deal exclusively with simple cones, d-dimensional cones
with d extremal rays and facets. Some of the facets of these cones may be open.
Since we will mostly be dealing with cones in their expli@presentation, we will have
occasion to speak of “open rays”, by which we will mean thatfdcet not containing
the ray is open. (There is only one such facet because thessmaple.)

Definition 5.1 (Fundamental parallelepiped) Let K = v+pos{ u; } be a closed (shifted)
cone, then théundamental parallelepipdd of K is

H=V+{Za’iui|0§a’i<l}.
i

If some of the rays; of K are open, then the constraints on the correspondingfieoe
cienta; are such thad < aj < 1.

Lemma 5.2 (Integer points in the fundamental parallelepipé of a simple cone) Let
K = v+pos{ u; } be a closed simple cone and let A be the matrix with the geosnait
of K as rows. Furthermore let VAW = S = diags be the Smith Normal Form (SNF)
of A. Then the integer points in the fundamental parallglediof K are given by

W= VT {(KW - VAT A (5.3)

d d
v+ Z{(kjW} —\/T’ui*>} UiT,
-1

i=1

whereu; are the columns of & and k € Z ranges oveD < kj < s;.

33

Figure 5.4: The integer points in the fundamental parglieled ofK

Proof Since 0< {x} < 1, it is clear that each suadk lies inside the fundamental
parallelepiped. Furthermore,

WT

V(KW= VAT A

v+ (KW= VDA™ — | (K'W = v)AT]) A
K'W | (K'W-V)AT| A ez
—— S ~——"

e71xd

e71xd e7dxd

Finally, if two suchw are equal, i.ew; = wy, then
0=wj-w; = KW-k;W+p'A
(K] - k)W +p'ViSW

with p € 29, orky = ko mods, i.e.,k; = k,. Since de§ = detA, we obtain all points
in the fundamental parallelepiped by takinglak Z9 satisfying 0< ki <sj. O

If the coneK is not closed then the cfiients of the open rays should be in 1D
rather than in [01). In (5.3), we therefore need to replace the fractionat pgr=
X — [X] by {{x}} = x— [x— 1] for the open rays.

o sl i1}

0

Example 5.5 Let K be the cone

K=

34

shown in Figuré 5.4. Then

2 1 o (12 12
S T

% A 3

We havedetA = detS = 2andk] = [0 0] andk} = [0 1]. Therefore,

e ot 3 2l 2o o

e al of's" il
[1/2 1/2][8 _11}=[1 q.

5.3 Barvinok’s decomposition of simple cones in primal space

As described by De Loera et al. (2004), the first implemeoitatif Barvinok’s count-
ing algorithm applied Barvinok’s decomposition (Barvind®94) in the dual space.
Brion’s polarization trick (Brion 1988) then ensures thauydo not need to worry
about lower-dimensional faces in the decomposition. Aaotliay of avoiding the
lower-dimensional faces, in the primal space, is to pertiiebvertex of the cone such
that none of the lower-dimensional face encountered coafay integer points (Bppe
2007). In this section, we describe another technique $Hadsed on allowing some of
the facets of the cone to be open.

The basic step in Barvinok’s decomposition is to replacedimensional simple
coneK = pos{y; }id=1 c QY by a signed sum of (at most) conesK; with a smaller
determinant (in absolute value). The cones are obtaineddnessively replacing each
generator oK by an appropriately chosem = Zid:1 aiu;, i.e.,

and

O =

and

.
W3

Kj = pos({ui Ly \ {uj} U{w}). (5.6)

To see that we can use thésgto perform a decomposition, rearrange thesuch that
forall1 <i < kwe havey; < 0 and for allkk + 1 <i < d’ we haveq; > 0, withd — d’
the number of zera;. We may assumk < d’; otherwise replacev € B by —w € B.

We have
k o
W+ Z(_ai)ui = Z a;U;
i-1 i=k+1
or

Zk:ﬂiui = i aiui, (5.7)

i=0 i=k+1

35

Figure 5.11: Possible locations wfwith respect to the rays of a 3-dimensional cone.
The figure shows a section of the cones.

with up = w, o = 1 andg; = —¢; > O for 1 < i < k. Any two u; andu; on the same
side of the equality are on opposite sides of the lineariuf the othen;s since there
exists a convex combination af andu; on this hyperplane. In particular, sinegand
a have the same sign, we have

O,’]' o]

uj + ueH for ajay > 0. (5.8)
aj+q aj+q
The corresponding conds; and K, (with Ko = K) therefore intersect in a common
faceF c H. Let
K’ := pos({ui 1, U (w}),

then anyx € K’ lies both in some conK; with 0 < i < k and in some con&; with
k+1 <i < d. (Just subtract an appropriate multiple of Equation|(5.The cones

{K; }};0 and{ K; }id:'k+l therefore both form a triangulation & and hence

k

;
[KT=[Kl+ D K= D [Fi] = D) Kl = [Fi] (5.9)
i=1 jed i=k+1 j€edy
or »
[K] = > alkl+ > 6[F]. (5.10)
i

i=1

withe = -1forl<i <k g =1fork+1<i<d,d €({-11 andF; some
lower-dimensional faces. Figure 5]11 shows the possibiigurations in the case of
a 3-dimensional cone.

As explained above there are several ways of avoiding thertaiimensional faces
in (5.10). Here we will apply the following proposition.

36

Proposition 5.12 |(Kdppe and Verdoolaege (2008)).et

D 6lPl+) 6dP]=0 (5.13)

iE|1 i€|2

be a (finite) linear identity of indicator functions of claspolyhedra P ¢ QY, where
the polyhedra Pwithi € I; are full-dimensional and those wittei |, lower-dimensional.
Let each closed polyhedron be given as

Pi ={x|(bf"j,x>zﬁi,j forjeJi}.

Lety € QY be a vector such thab;],y) # O0foralli el Ul,, je€ J. Foreachie I,
we define the half-open polyhedron

B = {x @] (b}, %) = i for j € J with (b{;,y) > 0, (5.14)
07, x) > gijforjed With(bﬁj,y><0}~ .

Then
> alPl=0. (5.15)

iely
When applying this proposition to (5.10), we obtain

’

K] = i‘g‘ [Ki]. (5.16)

where we start out from a giveld, which may beK itself, i.e., a fully closed cone,
or the result of a previous application of the propositidther through a triangulation
(Section 5.4) or a previous decomposition. In either cassjitabley is available,
either as an interior point of the cone or as the vector usédeiprevious application
(which may require a slight perturbation if it happens todieone of the new facets
of the cone<;). We are, however, free to construct a ngwn each application of
the proposition. In fact, we will not even construct such eteeexplicitly, but rather
apply a set of rules that is equivalent to a valid choice.oBelow, we will present
an “intuitive” motivation for these rules. For a more alggibr shorter, and arguably
simpler motivation we refer to 8ppe and Verdoolaege (2008).

The vectow has to satisfyb]f, y) > Ofor normalsb? of closed facets anﬁb’j‘, yy<0
for normalsb]f of open facets oK. These constraints delineate a non-empty open cone

R from whichy should be selected. For some of the new facets of the dépetbe
coneR will not be cut by the &ine hull of the facet. The closedness of these facets
is therefore predetermined H§. For the other facets, a choice will have to be made.
To be able to make the choice based on local information atttbwi computing an
explicit vectory, we use the following convention. We first assign an arbjttatal
order to the rays. If (theffine hull of) a facet separates the two rays not on the facet
ui anduj, i.e., ajj > 0 (5.8), then we choosgeto lie on the side of the smallest ray,
according to the chosen order. That{&;;,y) > 0, for ii;; the normal of the facet

37

pointing towards this smallest ray. Otherwise, i.egiit; < 0, the interior ofK will
lie on one side of the facet and then we chogge lie on the other side. That is,
(fij,yy > 0, for fi;; the normal of the facet pointing away from the cdfeFigure 5.17
shows some example decompositions with an explicitly nmayke

To see that there isyasatisfying the above constraints, we need to showRiTag
is non-empty, withS = {y | (fi,j.y) > 0 for allk}. It will be easier to show this set
is non-empty when the; form an orthogonal basis. Applying a non-singular linear
transformatioril does not change the decompositiomah terms of they; (i.e., theg;
remain unchanged), nor does this change any of the scaldugsin the constraints

that defineRN'S (the normals are transformed ()Vl)T). Finding a vectoy € T(RNS)

ensures that ~1(y) e RN S. Without loss of generality, we can therefore assume for
the purpose of showing th&n S is non-empty that the; indeed form an orthogonal
basis.

In the orthogonal basis, we habg = u; and the corresponding inward nornivlis
eitheru; or —u;. Furthermore, each normal of a facet®bf the first type is of the form
figje = Ui, — biuj,, with a, by > 0 andiy < jk, while for the second type each normal
is of the formfy, j, = —awUi, —bxuj,, with ag, bk > 0. If fi;, j, = akui, —bgu;, is the normal
of a facet ofS then either N;,, N;,) = (uj,, uj,) or (Ni,, Nj,) = (-uj,, —uj,). Otherwise,
the facet would not ciR. Similarly, if fi; j, = —aku;, — byuj, is the normal of a facet of
S then eitheri§;,, N;,) = (ui,, —uj,) or (Ni,, Nj,) = (-uj,, uj,). Assume now thaRnN S
is empty, then there exisl, 4 > 0 not all zero such thak Afiij, + X uiNi = 0.
Assumely > 0 for some facet of the first type. Nj, = —uj,, then—b, can only be
canceled by another facktof the first type withjx = iy, but then alsiN;, = -uj,.
Since thejy are strictly increasing, this sequence has to stop withietlgtpositive
codficient for the largesti;, in this sequence. If, on the other haid, = u;,, thenay
can only be canceled by the normal of a fakedf the second kind withy = ji, but
thenN;, = —u;, and we return to the first case. FinallyAif > 0 only for normals of
facets of the second type, then eitiNgy = —u;, or N, = —u;, and so the cdécient of
one of these basis vectors will be strictly negative. Thatis sum of the normals will
never be zero and the 98 S is non-empty.

For each ray; of conekK;, i.e., the cone withy; replaced byw, we now need to
determine whether the facet not containing this ray is dasenot. We denote the
(inward) normal of this cone by;;. Note that coneK; (if it appears in[(5.9), i.e.,
«; # 0) has the same facet oppositeand its normah;; will be equal to eithen;; or
—n;j, depending on whether we are dealing with an “external”tfdee, a facet oK’,
or an “internal” facet. If, on the other hand; = 0, thenn;; = ng;. If (n;j,y) > 0O, then
the facet is closed. Otherwise it is open. It follows thattie (or more) occurrences
of external facets are either all open or all closed, whitariternal facets, exactly one
is closed.

First consider the facet not containing = w. If ; > 0, thenu; andw are on the
same side of the facet and 8@ = ng. Otherwisenjg = —njg. Second, ilwj = 0, then
replacingu; by w does not change thefae hull of the facet and sm; = ng;. Now
consider the case thatej < 0, i.e.,u; andu; are on the same side of the hyperplane
through the other rays. If we projegt, u; andw onto a plane orthogonal to the ridge
through the other rays, then the possible locations efith respect tay; andu; are

38

Ye ye

Figure 5.17: Examples of decompositions in primal space.

39

Figure 5.18: Possible locations wfwith respect tay; andu;j, projected onto a plane
orthogonal to the other rays, whetr; < 0.

Figure 5.19: Possible locations wfwith respect tay; anduj, projected onto a plane
orthogonal to the other rays, whetw;j > 0.

shown in Figure 5.18. If bothg andny; are closed then lies in region 1 and therefore
nij (as well asnj) is closed too. Similarly, if botmg andng; are open then so is;.

If only one of the facets is closed, then, as explained abseghoosa;; to be open,
i.e., we takey to lie in region 3 or 5. Figure 5.19 shows the possible conéitians for
the case thatia; > 0. If exactly one ofg andnyg; is closed, thery lies in region 3 or
region 5 and therefone; is closed ff ng; is closed. Otherwise, as explained above, we
choosenjj to be closed if < j.

The algorithm is summarized in Algorithm 1, where we use tevention that in
coneK;, u; refers toup = w. Note that we do not need any of the rays or normals in
this code. The only information we need is the closednesseofdacets in the original
cone and the signs of thg.

5.4 Triangulation in primal space

As in the case for Barvinok's decomposition (Section 5.3,a&n transform a trian-
gulation of a (closed) cone into closed simple cones intgaagulation of half-open
simple cones that fully partitions the original cone, isich that the half-open sim-

40

Algorithm 1 Determine whether the facet oppositgis closed inK;.
If a/j =0
closedK;][uj] := closedK][u;]
elseifi = j
if aj > 0
closedK;][u;] := closedK][u;]
else
closedKi][u;] := ~closedK][u|]
else ifajaj > 0
if closedK][ui] = closedK][u|]
closedKi][uj] :=i < j
else
closedK;][u;] := closedK][u;]

else
closedKi][u;] := closedK][u;] and closedK][u]]

ple cones do not intersect at their facets. Again, we apphp®sition 5.12 withy an
interior point of the cone (Section 5.1). Note that the iiwiepointy may still inter-
sect some of the internal facets, so we may need to pertulibhitlg. In practice, we
apply a lexicographical rule: for such (internal) facetsich always appear in pairs,
we close the one with a lexico-positive normal and open theevaith a lexico-negative
normal.

5.5 Multivariate quasi-polynomials as lists of polynomials

There are many definitions for a (univariate) quasi-polyi@nEhrhart (1977) uses a
definition based operiodic numbes.

Definition 5.20 A rational periodic numbelJ (p) is a functionZ — Q, such that there
exists aperiodq such that Yp) = U(p’) whenever p= p° modqg.

Definition 5.21 A (univariate)quasi-polynomialf of degree d is a function
f(n) = ca(mn’ +--- + cr(Mn+co,

where ¢(n) are rational periodic numbers. l.e., it is a polynomial eggsion of degree
d with rational periodic numbers for cgficients. Theperiodof a quasi-polynomial is
the Icm of the periods of its cgieients.

Other authors (e.g., Stanley 1986) use the following déimibf a quasi-polynomial.

Definition 5.22 A function f: Z — Q is a (univariate)quasi-polynomiabf period q
if there exists a list of q polynomials g Q[T] for 0 < i < g such that

f(s) = gi(9) ifs=i modq.

The functions gare called theconstituents

41

In our implementation, we use Definition 5.21, but whereash&tt (1977) uses a
list of g rational numbers enclosed in square brackets to represgatifc numbers, our
periodic numbers are polynomial expressions in fractiquaats (Section 1.3). These
fractional parts naturally extend to multivariate quasiypomials. The bracketed (“ex-
plicit”) periodic numbers can be extended to multiple vialés by nesting them (e.g.,
Loechner 1999).

Definition[5.22 could be extended in a similar way by havingastituent for each
residue modulo a vector periad However, as pointed out by Woods (2006), this may
not result in the minimum number of constituents. A vectaiqabcan be considered as
a lattice with orthogonal generators and the number of dowesits is equal to the index
or determinant of that lattice. By considering more genlattices, we can potentially
reduce the number of constituents.

Definition 5.23 A function f: Z" — Q is a (multivariate)quasi-polynomiabf period
L if there exists a list ofletL polynomials g€ Q[Ty,..., Ty] fori in the fundamental
parallelepiped of L such that

f(s) = gi(9) ifs=i modL.

To compute the period lattice from a fractional represémmatwe compute the
appropriate lattice for each fractional part and then thkdr intersection. Recall that
the argument of each fractional part is dfiree expression in the parametefs, p) +
c)/m, with a € Z" andc,m € Z. Such a fractional part is translation invariant over
any (integer) value op such that(a,p) + mt = 0, for somet € Z. Solving this
homogeneous equation over the integers (in our implementatve usePolyLib’s
SolveDiophantine) gives the general solution

-

The matrixU; € Z™" then has the generators of the required lattice as columms. T
constituents are computed by plugging in each integer poitite fundamental par-
allelepiped of the lattice. These points themselves arepabed as explained in Sec-
tion[5.2. Note that for computing the constituents, it ifiisient to take any represen-
tative of the residue class. For example, we could take- kW in the notations of
Lemmd 5.2.

X forx e Z".

Example 5.24 (Woods (2006))Consider the parametric polytope
Pst ={X]0< x< (s+1)/2}.

The enumerator of R is
s| |-1 -2
S+L+1 if
LHl :
2

LISl _[-1 -
s+4+13 |fHel1 0

The corresponding output dbhirvinok_enumerate is

72 +

0
0
-1

72 +)
0

42

s+t >=0
1>=0

Lattice:

[[-1 1]

[-2 0]

]

[0 0]

(1/2 * s+ (1/2 *t+1)

)

[-1 0]

(1/2 *s+ (1/2 *t+1/2)
)

5.6 Leftinverse of an dfine embedding

We often map a polytope onto a lower dimensional space toveipossible equalities
in the polytope. These maps are typically represented bintleese, mapping the co-
ordinates<’ of the lower-dimensional space to the coordinates$ (an dfine subspace

of) the original space, i.e.,
X[| T v|[X
100 1f|1}’

where, as usual iRolyLib, we work with homogeneous coordinates. To obtain the
transformation that maps the coordinates of the originatepo the coordinates of
the lower dimensional space, we need to compute the leftdavef the abovefine
embedding, i.e., aA, b andd such that

d X' _[A bf|x
1| (o7 df|1
To compute this left inverse, we first compute the (right) rHiée Normal Form

(HNF) of T,
U H
7= [5]

dH71U1 —d H-1v
o d ’

The left inverse is then simply

We often also want a description of thffiae subspace that is the range of tiigne
embedding and this is given by

U, -—-Uyv|[x
o’ 1 1

This computation is implemented ireft_inverse.

=0.

43

5.7 Integral basis of the orthogonal complement of a linear -
space

Let My € Z™" be a basis of a linear subspace. We first ext®hidvith zero rows to
obtain a square matrid’ and then compute the (left) HNF &4’,

Mi| [H 0O]|Q1

0| [0 0]|Qf
The rows ofQ, span the orthogonal complement of the given subspace. Sxcan
be extended to a unimodular matrix, these rows form an iatdgrsis.

If the entries on the diagonal &f are all 1 therM; can be extended to a unimodular
matrix, by concatenatinyl; andQ,. The resulting matrix is unimodular, since

Mi| [H 0 Q
Q2| [0 Ihmnm]|Q2
This method for extending a matrix of which only a few lineg &nown to a uni-

modular matrix is more general than the method describedibyl®96), which only
considers extending a matrix given by a single row.

5.8 Ensuring a polyhedron has only revlex-positive rays

The barvinok_series_with_options function and all furthemgen_fun manipula-
tions assume that thefective parameter domain has only revlex-positive rays. When
used to computer rational generating functions Hiwevinok _enumerate application

will therefore transform thefective parameter domain of a problem if it has revlex-
negative rays. It will then not compute the generating fiomct

f(x) = Z #(Pp N Z9) %P,

pez™

but
9@2) =) #Pryw NZ9) %
p’ez"
instead, wher@ = Tp’ +t, with T € Z™" andt € Z™, is an dfine transformation that
maps the transformed parameter space back to the origirahpser space.

First assume that the parameter domain does not contaiimasyand that there are
no equalities in the description &% that force the values qf for which P, contains
integer points to lie on a non-standard lattice. Let tifedaive parameter domain be
given as{p | Ap + ¢ > 0}, whereA e Z>9 of row rankd; otherwise the fective
parameter domain would contain a line. [tebe the (left) HNF ofA, i.e.,

A=HQ,

with H lower-triangular with positive diagonal elements a@cunimodular. Let®
be the matrix obtained from® by reversing its rows, and, similarlyd from H by

44

reversing the columns. After performing the transformapo= Op, i.e.,p = O p’,
the transformed parameter domain is given by

(P IAQ7'p" +c>0)

or 3
{p’|Hp’ +c>0}.

The first constraint of this domain g1p;, + ¢c1 > 0. A ray with non-zero final co-
ordinate therefore has a positive final coordinate. Sityildhe second constraint is
ha2p!, ; + ha1pp, + C2 > 0. A ray with zeronth coordinate, but non-zem- 1st coor-
dinate, will therefore have a positive- 1st coordinate. Continuing this reasoning, we
see that all rays in the transformed domain are revlex-pesit

If the parameter domain does contains lines, but is noticéstirto a non-standard
lattice, then the number of points in the parametric polgtapinvariant over a trans-
lation along the lines. It is therefore fiigient to compute the number of points in the
orthogonal complement of the linear subspace spanned bindse That is, we apply
a prior transformation that maps a reduced parameter doim#is subspace,

0

p=Lp =[L L||/|P,

whereL has the lines as columns, ahd an integral basis for the orthogonal comple-
ment (Section 5.7). Note that the inverse transformation

p=tp=[0 1][L L]7p

has integral caficients since_* can be extended to a unimodular matrix.

If the parameter valueg for which P, contains integer points are restricted to a
non-standard lattice, we first replace the parameters byferelt set of parameters
that lie on the standard lattice through “parameter congiwa3Meister 2004),

p=Cp'.
The (left) inverse ofC can be computes as explained in Section 5.6, giving
p’=C'p.

We have to be careful to only apply this transformation whethlthe equalities com-
puted in Sectioh 5/6 are satisfied and some additional Hilitgi constraints. In par-
ticular if a”/d is a row ofC™t, with a € Z" andd € Z, the transformation can only be
applied to parameter valupssuch thad divides(a, p).

The complete transformation is given by

p= CLLQ—lp/
or

p’=QL*C'p.

45

5.9 Parametric Volume Computation

The volume of a (parametric) polytope can serve as an appedian for the number
of integer points in the polytope. We basically follow thesdeption of Rabl (2006)
here, except that we focus on volume computatiodifiearly parametrized polytopes,
which we exploit to determine the sign of the determinantompute, as explained
below.

Note first that the vertices of a linearly parametrized bt are fiine expres-
sions in the parameters that may be valid only in parts (cleag)tof the parameter
domain. Since the volume computation is based on the (3ctertices, we perform
the computation in each chamber separately. Also noteithz the vertices arefine
expressions, it is easy to check whether they belong to & face

The volume of ad-simplex, i.e., ad-dimensional polytope witld + 1 vertices, is
relatively easy to compute. In particular)Mf(p), for 0 < i < d, are the (parametric)
vertices of the simplef then

vi1(p) — Vo1(p) Vi2(P) — Vo2(P) ... Vid(P) — Vod(P)
1 Vo1(P) — Vo1(p) Vo2(p) — Vo2(P) ... Vad(P) — Vod(P)

VoI P = a det : : . : (5.25)
Va1 (p) — Vo(p) Va2(p) — Vo2(p) ... Vdd(p) — Voa(P)

If Pis not a simplex, i.e.N > d + 1, with N the number of vertices d?, then the
standard way of computing the volume Bfs to firsttriangulate B i.e., subdivideP
into simplices, and then to compute and sum the volumes ofeidting simplices.
One way of computing a triangulation is to compute the bariere

=)

of P and to perform a subdivision by computing the convex hullhefbarycenter with
each of the facets d®. If a given facet ofP is itself a simplex, then this convex hull
is also a simplex. Otherwise the facet is further subdivid&tis recursive process
terminates as every 1-dimensional polytope is a simplex.

The triangulation described above is known as the boundiamygulation (Rieler
et al. 2000) and is used by Rabl (2006) in his implementafiétwe Cohen-Hickey trian-
gulation|(Cohen and Hickey 1979{iBler et al. 2000) is a much morgieient variation
and uses one of the vertices instead of the barycenter. Teésfancident on the ver-
tex do not have to be considered in this case because théngsubpolytopes would
have zero volume. Another possibility is to use a “liftinglahgulation (Lee 1991;
De Loera 1995). In this triangulation, each vertex is assiga (random) “height” in
an extra dimension. The projection of the “lower envelopkthe resulting polytope
onto the original space results in a subdivision, which isaagulation with very high
probability.

A complication with the lifting triangulation is that the igstraint system of the
lifted polytope will in general not be linearly parametexiz even if the original poly-
topeis. Itis, however, ghicient to perform the triangulation for a particular valueted

46

parameters inside the chamber since the parametric pelytap the same combinato-
rial structure throughout the chamber. The triangulatibtaimed for the instantiated
vertices can then be carried over to the corresponding pranvertices. We only
need to be careful to select a value for the parameters tlest wlot lie on any facet
of the chambers. On these chambers, some of the verticesamayde. For linearly
parametrized polytopes, it is easy to find a parameter poithig interior of a chamber,
as explained in Section 5.1. Note that this point need nontegér.

A direct application of the above algorithm, using any of th@ngulations, would
yield for each chamber a volume expressed as the sum of tiéutdsgalues of poly-
nomials in the parameters. To remove the absolute value|wgepa particular value
of the parameters (not necessarily integer) belongingagten chamber for which
we know that the volume is non-zero. Again, it isfszient to take any point in the
interior of the chamber. The sign of the resulting value tetermines the sign of the
whole polynomial since polynomials are continuous funeiand will not change sign
without passing through zero.

5.10 Maclaurin series division

If P(t) andQ(t) are two Maclaurin series

P(t) = ag + agt + agt? + - - -
Q(t)=b0+b1t+b2t2+'”,

then, as outlined by Henrici (1974, 241-247), we can comingeoeéficientsc in

Pt) _. 2,
@_.co+clt+c2t +

by applying the recurrence relation

To avoid dealing with denominators, we can also compute b'o+10| instead as

|
d = b'0a| - Z blo_lbiCH.

i=1
The codficientsc, can then be directly readioas

d

C=—-.
|+1
by

5.11 Specialization through exponential substitution

This section draws heavily from De Loera andpgpe (2006).

47

We define a “shorttational generating functiomo be a function of the form

r Wik

F(x) = Za.gk+X (5.26)

iel Hj;l (1_ Xb”)
with x € Cd, a; € Q, Wi € zd andbi,- e 79 \ {0}.

After computing the rational generating function (5.26)agfolytope (withk; = d

for all i), the number of lattice points in the polytope can be obtibg evaluating
f(1). Sincelis a pole of each term, we need to compute the constant terimein t
Laurent expansions of each term fin (5.26) abbutSince it is easier to work with
univariate series, a substitution is usually applied egithpolynomial substitution

X = (L+1t)4,

as implemented ihattE (De Loera et al. 2003), or an exponential substitution (see,
e.g., Barvinok and Pommersheim 1999),

x =4
as implemented ihattE macchiato (Kdppe 2006). In each caskg Z9 is a vector
that is not orthogonal to any of th®;. Both substitutions also transform the problem
of computing the constant term in the Laurent expansionsitabe 1 to that of com-
puting the constant term in the Laurent expansions abeud. Here, we discuss the
exponential substitution.
Consider now one of the terms in (5126),

Vi1 €

D= ———
a(t) H?:l (1 et

with ay = (wik, 4) andc; = (bjj, 4). We rewrite this equation as

o, e —cit
o0 =S —| | e
t HJ =1Cj j-1
The second factor is analytic in a neighborhood of the ottigirc; = --- = ¢g = 0 and

therefore has a Taylor series expansion

d

[15=

j=1

Z tdm(=C1, . . ., —C)t™, (5.27)

where tg, is a homogeneous polynomial of degmeecalled them-th Todd polyno-
mial (Barvinok and Pommersheim 1999). Also expanding thaerator in the first
factor, we find

(1)d Zk lak _ m
g(t)‘tdnjlc. [Z)[thm(Cr, o =Ca)t™ |,

n=0

48

with constant term

(-1 i Ther 8

td
d r7d . il
Il c\im

tdy-i(—C1, ..., —Cq)
4 d r i
(-1) k=1 8
5 :
[Ti-1 6 = I
To compute the firal+ 1 terms in the Taylor serigls (5.27), we write down the truedat
Taylor series

-1 E 1, 1 S dyy "
_=Z(i+1)!t=(d+1)!;(i+1)!t mod 7%,

tdg_i(-C1,...,—Cq). (5.28)

where we have

1 Z(d+1)| L

(d+ 1) & (i + 1) (d+1)!
Computing the reciprocal as explalned in Section 5.10, we fin
v 1 (d+ 1) ———— Z bit'. (5.29)

_ — e-1 d (d+l)'
1-¢ -1 t IO(H—l)'

Note that the constant term of the denominator/@% 1)!. The denominators of the
quotient are therefored@ 1)!)"*1/(d + 1)!. Also note that théy are independent of the
generating function and can be computed in advance. Amalige way of computing

theb; is to note that
t ot
g-1 Z; Bir
i=
with B; = i! b the Bernoulli numbers, which can be computed using the renae((5.34)

(see Section 5.12).
Substitutingt by cjt in (5.29), we have

_CJ i
T Z b.ct

Multiplication of these truncated Taylor series for eaghesults in the first + 1 terms

of (5.27),

d d 5
D (=" = D gt

from which it is easy to compute the constant term (5.28).eMbat this convolution
can also be computed without the use of rationafiicients,

ﬂ : @ Ba-i _ (-1) d ((d + 1)1y ' |
M) Zo: @+ DY (@ + DY Z(il “')ﬁd—"

i=0

with @; = Zrk:l a;(

49

Example 5.30 Consider the rational generating function

Xt N X . 1
A-xH1-x"%) A-xHA-x6Y) (1-x)(1- %)

f(T;x) =

from Verdoolaege (2005, Example 39). Since this is a 2-diineal problem, we first
compute the first 3 Todd polynomials (evaluated &,

-1 . 1 1, 1

T: +§t+6t_é[6 3 1]
and

-t ot :[1 -3 3]

1-¢ -1 11 6 36l°

where we represent each truncated power series by a vectits obgficients. The
vectord = (1, -1) is not orthogonal to any of the rays, so we can use the substitu
x = eIt and obtain

I g2 1
(1-eY(1-e?) * (1-¢)1-¢e) * (1-e)d1-et)’
We have

S 1
1-et [1 6 36

2 ey
1-e2 [1 6 36
L B i]
1-¢ 1 6 36
21 6 12
1-e |1 6 36l

The first term in the rational generating function evaluates

1 [1 2 4]*([1 3 3 [1 6 12)

-1--2117 1 21 \l1 & 36ll1 6 36
_5[1 2 4*[1 9 33]

21 1 21'l1 6 36

1 213 71
_7—2[1 2.6 4-18]*[1 9 33}_ﬁ_ﬂ.

Due to symmetry, the second term evaluates to the same wdilile for the third term
we find

1 3 1
— = [1 0.6 0-18/«[1 0 -3]=— -~
—1~1~36[[« | 36 12
The sum is
7171 1
2472471277

50

Note that the run-time complexities of polynomial and exgatial substitution are
basically the same. The experiments afidpe (2007) are somewhat misleading in this
respect since the polynomial substitution (unlike the eepdial substitution) had not
been optimized to take full advantage of the stopped Bakvitecomposition. For
comparison, Table|1 shows running times for the same expetsrof that paper, but
using barvinok versiobarvinok-0.23-47-gaa9024e on an Athlon MP 1508 with
512MiB internal memory. This machine appears to be sligsibyer than the machine
used in the experiments ofdpe (2007) as computirtgi ckerson-14 using the dual
decomposition with polynomial substitution and maximalér 1 took 2768 seconds
on this machine usingattE macchiato. At this stage, it is not clear yet why the
number of cones in the dual decompositionhiftkerson-13 differs from that of
LattE (De Loera et al. 2003) andattE macchiato (Koppe 2006). We conclude
from[Table 1 that (our implementation of) the exponentifistitution is always slightly
faster than (our implementation of) the polynomial subsitin. The optimal maximal
index for these examples is about 500, which agrees withxperaments of Kppe
(2007).

5.12 Approximate Enumeration using Nested Sums

If P € QYis a polyhedron ang(x) € Q[x] is a polynomial and we want to sum
p(x) over all integer values of (a subset of) the varialdethen we can do this incre-
mentally by taking a variable; with lower boundL(X) and upper bound) (X), with

X = (X,...,Xd), and computing

UK

QR =). pK). (5.31)

x=L(%)

SinceP is a polytope, the lower bound is a maximum dfiree expressions in the
remaining variables, while the upper bound is a minimum ehsexpressions. If the
codficients in these expressions are all integer, then we cane@gk) exactly as a
piecewise polynomial using formulas for sums of powers,rap@sed by, e.g., Tawbi
(1994), Sakellariou (1997), Van Engelen et al. (2006). themf the cofficients are
not integer, we can apply the same formulas to obtain an appadion, which can is
some cases be shown to be an overapproximation (Van Engedér2806). Note that
if we take the initial polynomial to be the constant 1, theis tives us a method for
computing an approximation of the number of integer poimts (parametric) polytope.

The first step is to compute the chamber decompositidd when viewed as a 1-
dimensional parametric polytope. That is, we need to jpamtthe projection o onto
the remaining variables into polyhedral cells such thatichecell, both the upper and
the lower bound are described by a singiéng expression. Basically, for each pair of
lower and upper bound, we compute the cell where the chogear lmound is (strictly)
smaller than all other lower bounds and similarly for the expound.

For any given pair of lower and upper bourdXj, u(x)), the formulal(5.31) is
computed for each monomial @{(x) separately. For the constant tetry, we have

51

Dual decomposition Primal decomposition
Time (s) Time (s)
Max. index Cones Poly Exp Cones Poly Exp
hickerson-12
1 11625 9.24 8.90 7929 4.80 4.55
10 4251 432 4.19 803 0.66 0.62

100 980 142 1.35 84 013 0.12
200 550 1.00 0.92 76 012 0.12
300 474 093 0.86 58 0.12 0.10
500 410 0.90 0.83 42 0.10 0.10
1000 130 0.42 0.38 22 0.10 0.07
2000 10 0.10 0.10 22 0.10 0.09
5000 7 012 0.11 7 012 0.10

hickerson-13
1 494836 489 463 483507 339 315
10 296151 325 309 55643 51 48
100 158929 203 192 9158 11 10
200 138296 184 173 6150 9 8
300 110438 168 157 4674 8 7
500 102403 163 151 3381 8 7
1000 83421 163 149 2490 8 7
2000 77055 170 153 1857 10 8
5000 57265 246 211 1488 13 11
10000 50963 319 269 1011 26 21
hickerson-14
1 1682743 2171 2064 552065 508 475
10 1027619 1453 1385 49632 62 59
100 455474 768 730 8470 14 13
200 406491 699 661 5554 11 10
300 328340 627 590 4332 11 9
500 303566 605 565 3464 11 9
1000 232626 581 532 2384 12 10
2000 195368 607 545 1792 14 12
5000 147496 785 682 1276 19 16
10000 128372 966 824 956 29 23

Table 1: Timing results of dual and primal decompositionhwiblynomial or expo-
nential substitution on the Hickerson examples

52

u(R)
Z @o(R) = ao(R) (UR) = I(R) + 1). (5.32)

x=1(%)

For the higher degree monomials, we use the formula

= 1 &Gn+l
n_ +1-k _.
Z K'= — Z())Bkm“ =: Sp(M), (5.33)
k=0 k=0
with B;j the Bernoulli numbers, which can be computed using the renae

m
D (m]r 1)BJ- -0 By=1 (5.34)
j=0

Note that[(5.33) is also valid ifh = 0, i.e.,Sp(0) = 0, a fact that can be easily shown
using Newton series (Van Engelen et al. 2006).

Since we can only directly apply the summation formula whenlbwer bound is
zero (or one), we need to consider several cases.

1L.IX) =1
u(®) u(®) I(%)-1
D an(®x] = an(®) (Z - XQ]
x=1(%) x=1 x=1
= an(R) (Sn(U(X) + 1) - Sn(I(X)))
2. uX)<-1

u(x) 1%

D a®x = a1 D e

x1=1(X) x1=—U(X)

= an(%)(=1)" (Sn(-1(X) + 1) - Sn(-u(X)))

3. I(X) <0andu(X) >0

u®) u®) 1%
D an® X = an(®) [Z X+ (-1) x';]
X1=0

x1=1(X) x1=1

= an(X) (Sn(U(X) + 1) + (-1)"Sn(-1(X) + 1))

If the codficients in the lower and upper bound are all integer, then Hiovea 3
cases partition (the integer points in) the projectiofP@nto the remaining variables.
However, if some of the cdicients are rational, then the lower and upper bound can
lie in the open interval (A) for some values ok. We may therefore also want to
consider the following two cases.

53

4, 0<I(X) <1

u(®)

D an®) X = an(R)Sa(u(R) + 1)

x1=1(%)

5. 0<-u(X) <1

u(x)
D, @n(®)X] = an(®)(-1)"Sn(-1(R) + 1)

x=1(%)

Note that we may add the constraint 1 to case 4 and the constraint —1 to case 5,
since the correct value for these two cases would be zeresktextra constraints do
not hold.

An alternative to adding the above two cases would be to singplore them, i.e.,
assume a value of 0. Another alternative would be to reduse 8o

[(X) < -1 and u(X)=>1,
while extending casés 4 ant 5 to
-1<I(X)<1 and u>1

and
-1<uX) <1l and I<-1,

respectively, with the remaining casesl(< | < u < 1) having value 0. There does
not appear to be a consistently better choice here, as eabtles# three approaches
seems to yield better results on some examples. The lastagphas the additional
drawback that we would also have to deal with 5 cases, evae iibunds are integers.
If at least one of the lower or upper bound is an integéna expression, then we
can reduce the 3 (or 5) cases to a single case (dase 3) bfim@ substitution that
ensure that the new (lower or upper) bound is zero. In paaticif I(X) is an integer
affine expression, then we replacéy x’ + [(X) and similarly for an upper bound.

5.13 Exact Enumeration using Nested Sums

The exact enumeration using nested sums proceeds in mushrieway as the ap-
proximate enumeration from subsection 5.12, with the rietekception that we need
to take the (greatest or least) integer part of any fractiboands that may occur. This
has several consequences, discussed below.

Since we will introduce floors during the recursive applimabf the procedure, we
may as well allow the weighp(x) in (5.31) to be a (piecewise) quasipolynomial.

For the constant term, (5.32) becomes

u(x)

>, @(®) = ao(®) (U] - TR +1).

x1=1(%)

54

Since we force the lower and upper bounds to be integerssieaaad 5 do not
occur, while the conditions for cases 1 and 2 can be simplified

I(X) > 0

and
ux) <0,

respectively.

If the variablex appears in any floor expression, either because such arseiqre
was present in the original weight function or because it wasduced when another
variable with an fine bound inx was summed, then the domain has to be “splintered”
into D parts, where is the least common multiple of the denominators of thefcoe
cients ofx in any of the integer parts. In particular, the domain istgpto x = Dy + i
for eachi in [0, D — 1]. SinceD is proportional to the cd&cients in the constraints,
it is exponential in the input size. This splintering wilkttefore introduce exponential
behavior, even if the dimension is fixed.

Splintering is clearly the most expensive step in the atgorj so we want to avoid
this step as much as possible. Pugh (1994) already noteduhmhation should pro-
ceed over variables with integer bounds first. This can beneldd to choosing a vari-
able with the smallest céigécient in absolute value. In this way, we can avoid splinter-
ing on the largest denominator.

Sakellariou (1996) claims that splintering can be avoideahather. In particular,
Sakellariou (1996, Lemma 3.2) shows that

a
Z X" (x modb)",
x=0

with a andb integers, is equal to

a

Do xm if a<b

L);:/gJ*l b-1 amodb (5.35)
D1 D)™+ 3T (x+bla/b)™" if a> b,
i=0 x=0 %=0

effectively avoiding splintering if a given monomial contamsingle integer part ex-
pression with argument of the formyb. An argument of the formx - c(X))/b can
be handled through a variable substitution. If the arguneenf the formcx/b, with

¢ # 1, then Sakellariou (1996, (3.27)) proposes to rewrite tbaomial as

za:(cx modb)" = Zal i(y modb)"
x=0

Xx=0 y=CcXx
a CX cx-1
= Z Z(y modb)" - Z(y modb)"
x=0 \y=0 y=0

55

and applyingl (5.35). However, such an application resaolemi expression containing

cxmodb

Yy

y=0

which in turn leads to a polynomial of degree+ 1 in (cxmodb), i.e., of degree
one higher than the original expression. Furthermore,édflibund onx is rational
thena itself contains a floor, which, on application of (5.35),ukts in a nested floor
expression, blocking the application of the same rule ferrbxt variable. Finally,
the case where a monomial contains multiple floor expressgither occurring in the
input quasi-polynomial or introduced byft#irent variables having a rational bound
with a non-zero coicient in the same variable, is not handled. Also note thatelf w
disallow nested floor expressions, then this rule will nated applicable since we try
to eliminate variables with integer bounds first.

5.14 Summation using local Euler-Maclaurin formula

In this section we provide some implementation details égnmgiecal Euler-Maclaurin
formula to compute the sum of a piecewise polynomial evalliat all integer points
of a two-dimensional parametric polytope. For the theotyite these formula and a
discussion of the original implementation (for non-par&mesimplices), we refer to
Berline and Vergne (2006).

In particular, consider a parametric piecewise polynormial parameters anth
variablesc: Z" - Z™ - Q : p — ¢(p), withc(p) : Z™ — Q : x — ¢(p)(x) and

cy(p)(x) if x € Di(p)
Co(X) =
cr(p)(X) if x € Dr(p),

with the ¢; polynomials,c; € (Q[p])[x], and theD; disjoint linearly parametric poly-
topes. We want to compute

ap) = > c(P)X).

xezm

5.14.1 Reduction to the summation of a parametric polynomikover a paramet-
ric polytope with a fixed combinatorial structure

Since theD; are disjoint, we can consider eaah D;)-pair individually and compute

W)= am=) > c@EX.

r
i=1 i=1 xeDy(p)nzZ™

The second step is to compute the chamber decompositionld®aege 2005, Section
4.2.3) of each parametric polytoi#. The result is a subdivision of the parameter
space into chambe(; such thaD; has a fixed combinatorial structure, in particular a
fixed set of parametric vertices, on (the interior of) e@gh Applying Theorem 5.12,

56

this subdivision can be transformed into a partitj(irnj } by making some of the facets

of the chambers open @fpe and Verdoolaege 2008, Section 3.2). Since we are only
interested in integer parameter values, any of the reguitpen facetsa, p) + ¢ > 0,

with a € Z" andc € Z, can then be replaced l§g, p) + ¢ — 1 > 0. Again, we have

g.(p)—Zg.,(p)—Z > G

i xeCij(p)nzZ™

After this reduction, the technique of Berline and VergneQg) can be applied
practically verbatim to the parametric polytope with a fixenbinatorial structure.
In principle, we could also handle piecewise quasi-polyiadgrusing the technique of
Verdoolaege (2005, Section 4.5.4), except that we only teeeckate an extra variable
for each distinct floor expression in a monomial, rather tfareach occurrence of
a floor expression in a monomial. However, since we curreotlly support two-
dimensional polytopes, this reduction has not been imphteakyet.

5.14.2 Summation over a one-dimensional parametric polyfme

The basis for the summation technique is the local Euleridain formula (Berline
and Vergne 2006, Theorem 26)

PLOCED YN D h(D) (5.36)
Y

xeP(p)NA F(p)eF (P(p))

where P(p) is a parametric polytopeA is a lattice, 7 (P(p)) are the faces oP(p),
Dpp).F(p) IS a specific derential operator associated to the face of a polytope. The
Lebesgue measure used in the integral is such that theaht#fghe indicator function

of a lattice element of the lattick n (aff(F(p)) — F(p)) is 1, i.e., the intersection of

A with the linear subspace parallel to théire hull of the face~(p). Note that the
original theorem is formulated for a non-parametric pghg@and a non-parametric
polynomial. However, as we will see, in each of the steps endbmputation, the
parameters can be treated as symbolic constants witlfi@atiag the validity of the
formula, see also Berline and Vergne (2006, Section 6).

The diferential operatoDp,) r(p) is obtained by plugging in the vectBr= (Dy, ..., D)
of first order diferential operators, i.eDy is the first order dterential operator in the
kth variable, in the functiompg, F@p). This function is determined by theansverse
coneof the polyhedrorP(p) along its face~(p), which is the supporting cone &{(p)
alongF(p) projected into the linear subspace orthogon#& (). The lattice associated
to this space is the projection afinto this space.

In particular, for a zero-dimensionaifae cone in the zero-dimensional space, we
haveu = 1 (Berline and Vergne 2006, Proposition 12), while for a dimaensional
affine coneK = (-t + R,)r in the one-dimensional space, whelis a primitive integer
vector and € [0, 1), we have (Berline and Vergne 2006, (13))

&1 1,1)
OO = 1 +3 —Z (n+1),w (5.37)

57

with y = (£, r) andb(n, t) the Bernoulli polynomials defined by the generating series

oy Gob(nt)
TOdd¢, y) = m = ni yn (538)
n=0
The constant terms of these Bernoulli polynomials are thra@&dli numbers.
Applying (5.36) to a one-dimensional parametric polytd{p) = [vi(p), v2(p)],

we find
>, b)) = [Degyrp hip)
P(p)

xeP(p)NZ

+ f Dep).wi(p) - N(P)
vi1(p)

+ f Dr(p)vap) - N(P).
Vv2(p)

The transverse cone of a polytope along the whole polytope&o-dimensional cone
in a zero-dimensional space andBgy,).pp) = Hrp).pp)(D) = 1. The transverse cone
along vy(p) is va(p) + R+ and soDpp),p) = p(va(p) + R.)(D) as in (5.37), with
y =¢(D,1) = D andt = [vi(p)] — va(p) = {—Vva(p)}. Similarly we find Dp)v,(0) =
1(v2(p) —R.)(D) as in (5.37), witty = (D, -1) = D andt = v(p) - [v2(p)] = {v2(p)}.
Summarizing, we find

V2(p)

h(p)(x) = h(p)(t) dt

xeP(p)NZ vi(p)

—Z b(n + L (~va(p)})
(n+21)!

- Z(— P P O hE) (e

(D"h(p))(va(p))

Note that in order to apply this formula, we need to verifytfitatv,(p) is indeed
smaller than (or equal tok(p). Since the combinatorial structure B{p) does not
change throughout the interior of the chamber, we only neethéck the order of the
two vertices for one value of the parameters from the intexidhe chamber, a point
which we may compute as|in subsection 5.1.

5.14.3 Summation over a two-dimensional parametric polytpe

For two-dimensional polytope, formula (5.36) has threedkiof contributions: the
integral of the polynomial over the polytope, contribugcelong edges and contribu-
tions along vertices. As suggested by Berline (2007), ttegial can be computed by
applying the Green-Stokes theorem:

ff (@_@) f (Ldx+ Mdy).
P(p) \ OX P(p)

58

In particular, ifM(p)(x,y) is such thaf%(p)(x, y) = h(p)(x,y) then

f f h(p)(x.y) = f M(p)(x.Y) dy.
P(p) AP(p)

Care must be taken to integrate over the boundary in theiyslirection. Assuming
the vertices of the polygon are not given in a predetermirrdérowe can check the
correct orientation of the vertices of each edge indivigudlet n = (ny,ny) be the
inner normal of a facet and lgt(p) andv,(p) be the two vertices of the facet, then the
vertices are in the correct order if

Vo1(P) —vii(p) m
Vo2(p) — vio(p) M

Since these two vertices belong to the same edge, their sitl@ot change within a
chamber and so we can again perform this check for a single wdlthe parameters.
To integrateM over an edgé&, letf be a primitive integer vector in the direction of the
edge. Thewy(p) = va(p)+k(p) f and any point on the edge can be writtetvgp) + Af
with 0 < 2 < k(p). That is,

k(p)
fF M(P)(x.y) dy = fo ME)Vaa(p) + Afrvaz(p) + Af)f2dl. (5.39)

For the edges, we can again apply (5.37), but we must firsegtrthe supporting
cone at the edge into the linear subspace orthogonal to the ddtn = (hy, ny) be
the (primitive integer) inner normal of this face{p), thenf = (-ny, n;) is parallel to
the facet and we can write one of the vertiggs) as a linear combination of these two
vectors:

v(p) = [f n]a(p)=[‘n?2 Qj a(p) (5.40)
or .
a(p)=[‘n‘f Qj v(p)=[‘n?2/{f :;;g]wm, (5.41)

withd = nf + n%. The lattice associated to the linear subspace orthogorhetfacet

is the projection ofA into this space. Since is primitive, a basis for this lattice can
be identified withn/d. The coordinate of the whole facet in this space is therefore
da(p) = [nl an v(p), while the transverse cone dsx(p) + R,. Similarly, a linear
functional ¢ projects onto a linear functiong = (£’,n)/d in the linear subspace.
Applying (5.37), withy = 2D, + % D3 andt = {—nva(p) — nzva(p)}, we therefore find

o b(n + 1, {—ngvi(p) — nov; n ny _\"
Derr) = - > ({ (; ﬁ;' 2v2(P)}) (ElDl N EZDZ)
n=0 '
3 S B L (p) ~ nelp)) mny

— L2pi D).
(i+j+1)! di+i 7172

i=0 j=0

After applying this dfferential operator to the polynomiba{p)(x), the resulting poly-
nomiallY (p)(X) = Deg).r(p) - N(P)(X) needs to be integrated over the facet. The measure

59

to be used is such that the integral of a lattice tile in thedirspace parallel to the facet

isl,ie.,
f 1
flzf 1dz=1,
0 0

with zthe coordinate alonfy Referring to[(5.40) and (5.41), all points of the facet have
the formx(p) = zf + ay(p) n, while thez-coordinate of the vertices (p) andv,(p) are
(—navia + Mmvy2)/d and Cnpvag + Nivo2)/d, respectively. That is, the contribution of
the facet is equal to

(—N2V2,1+N1V22)/d
| () (zf + ao(p) 1) dz
(

—Mvy1+nive2)/d

where, again, we need to ensure that the lower limit is smtilen the upper limit
using the usual method of plugging in a particular value efgilarameters.

Finally, we consider the contributions of the vertices. Tlamsverse cones are in
this case simply the supporting cones. Sindga valuation, we may apply Barvinok’s
decomposition and assume that the cone is unimodular. Faffina cone

K=v(p)+R,ri +R,r»
= (a1(p) + Ry)ra + (az(p) + Ry)ra,
with i
a(p) = [r1 r2| v(p).
we have (Berline and Vergne 2006, Proposition 31),

ghyittayz

u(K)(E) = A-e)i-e)

1 1 1
+ —B(Y2 — Ciy1, t2) + —B(y1 — Coya, t1) — —, (5.42
" (Y2 — C1y1, t2) " (y1 — Cayo, t1) v (5.42)

with

_ __ 1Y
B-0 = 1 o Z (n+ 1)! NS R
Vi = (&, 1), Ci = (v, Vo) /{Vi, Vi) andt; = —a(p) . Expanding[(5.42), we find

| b(0,t1) — b(n+ 1,t;) b(0,t2) < b(n+1,tp)
’U(K)(f)_[_ V1 _nZ(:) (n+21)! yg](_ Yo _nZ::O (n+21)! yg]

~ (i b(n+ 1,t,) Y5 i b(n + 1,t) (Y2 — Cay1)" —yg]

— (n+1)! yp & (n+1)! V1
~ i b(n+1,t2) ¥7 .\ i b(n+ 1,t1) (Y1 — Cay2)" - ¥}
(n+)! y, & (n+1)! y2
1
Y12
= Z Z c(C1, Cao, 1, to; M, Np) VYA,
n=0ny,=0

60

with
b(n1 +1, tl) b(n2 +1, tz)
(n]_ + 1)' (nz + 1)'
b(n1+n2+1,t2) n+nmn+1
(e +np+ 1) (ng+1
b(n1+n2+1,t1) n+nmn+1
o (n+np+ 1) (n+1

C(C1,Co, tg,tp; Ny,) =

) (~Cp)m+t

)(—Cz)n2+l~
For& = D, we have

Y1Y3 = (r1.1D1 + r12D2)™ (r21D1 + r22D2)™
[Z rormy ()Danl](Z rhyaros '()D' DY]

and Sd)p(p),v(p) = u(K)(D) =

ZZ Z Z (Cy, Co, 11, t2; My, nZ)rlilrllz krlz 1r222 (kl)(|2)D|1D12'

i=0 j=0 i+j=ni+ny k+l=i
m>0 O<k<ng
>0 0O<lsm

The contribution of this vertex is then

' (p)(v(p)),
with I (p)(X) = Dp()v(p) - h(P)(X).

Example 5.43 As a simple example, consider the (non-parametric) triamgFigure 5.44
and assume we want to compute

Since TN Z2 = {(2,4),(3,4), (2,5)}, the result should be
2-4+3-4+2-5=30.

Let us first consider the integral

2
XX
aT

Integration along each of the edges of the triangle yiel@sfthilowing.
For the edge in the margin, we hafe- (1,0), i.e., & = 0. The contribution of this
edge to the integral is therefore zero. N

For this edge, we have= (-1, 1). The contribution of this edge to the integral i\;
\
L _

AN

- 7

therefore

1 2
(3-%4+1) . 337
J, =

61

(2.5)

2.4) (34)

Figure 5.44: Sum of polynomiad; x, over the integer points in a triangte

For this edge, we have= (0,-1). The contribution of this edge to the integral i

therefore
1 52(5 _
f 26D 1yaa- o
0 2
The total integral is therefore
f X2Xo 337 121
aT

7 Pe=0+ 77 -9=52

Now let us consider the contributions of the edges. We wéldrthe following

Bernoulli numbers in our computations.

1
b(1,0)= -3
1
b(2.0)= ¢
b(3,0) = 0
1
b(4.0)= - =

The normal to the facet Fin the margin isn = (0,1). The vectof = (-1,0) is

parallel to the facet. We have

2}:_2 -1

0

0
1

-1
+4 0

4 4

and |33

62

AN
AN
AN
—

N
\
AN

Therefore t= {-4} = 0, y = Dy,

3 b(j+10)
DTFl__Z (j+ 1)

__b(l,O)_ b(Z,O)D
T 1 2 ¢

and

2 12
With x = —z and % = 4, the contribution of this facet is

, 1 1 1 1
h (X) = D‘|',|:1 - X1 Xo = (2 12D2) X1 X0 = = X1 X2 — —=X1.

The normal to the facet #in the margin isn = (1,0). The vectorf = (0,1)is [.

parallel to the facet. We have
2 0 1
ana [7] g +2[8]

2 0

ARCH
Therefore t= {-2} = 0, y = Dy,

> b(i +1,0)

DT,FQ = _; (I + 1)| Dll

i=

b(1.0) b(2.0)
1 2

1
+20

——D1 +

and L1 . .
W (X) = Drr, - XX = (2 12D1) XX = SXiXo = 15X

With x = 2 and % = z, the contribution of this facet is

The normal to the facetdin the margin isn = (-1, -1). The vectof = (1,-1) is

parallel to the facet. We have
3| {1 7]-1 and 2| 3|1 7|1
4 2|-1] 2|-1 5 2|-1 -1\

Therefore t= {7} = 0,y = —3D; — 1D,,

7
2

o b(i + j+1,0) (=1)*
DT’F3:_ZZ (i +]) (1) D, D}

== i+j+1) 2+
_ b(1L,0) 1b(2,0) . 1b(2,0)
="T1 T3 g DPitzT5 Dat

63

and

1 1 1 1 1 1
h'(X) = DrF, - XaXe = (2 52Dt ﬂDz) TXOX = SXX + X0 o

With % = z+ and % = —z+ £, the contribution of this facet is

31 7 7. 1 7. 1 7 47
fg é(z-i- E)(—Z-i— §)+ﬂ(—z+ §)+ﬂ(z+ é)dZZ E

The total contribution of the edges is therefore

115 33 47 355
24 " 878" 24
Finally, we consider the contributions of the vertices.
For the vertex = (3,4), we have; = (-1,0) andr, = (-1, 1). Sincev is integer, fi
we havet=t, =0. Also,G =1,C, =1/2,y; = -D; and y» = —D1 + D,. Since the
total degree of the polynomiahx, is two, we only need the cieients ofu(K)(£€) up
tom +n, =2.
N | N

(REPEDy— S 1y~ 1))
(%“%4¥(§)<—1)2 b(3‘”(2)< 1)')(-Dy)
(Haobe0_ wsoiz) "1y 639(2) " 1y2) (“p, + D)
b(3.0) b(1.0) _ Vﬂ()(1)3 b(40) 3)(1))(D)2
2 b<“‘”()(—2)2)< D1) (-Dy + D)
(1)t - 2A(3)(-2)) (D1 + D)?

O L N O PP O
= O FrPr O O

2! B (
5 (A0 _ bad)(
We find ' '

3 1 7
h(x) = (8 - 2—4(—D1) - 2—4(—D1 + Do) + —(—DlDz) 1152(2D1D2)) X1X2

1
— — X — —(— — (-2
X1X2 + =5 X2 24(Xo + X1) + 576(1)- 1152():
The contribution of this vertex is therefore
1355
288"

For the vertex = (2,5), we have; = (0,-1) andr, = (1, -1). Sincev is integer, h

h(3,4) =

we havet =1, =0. Also,G =1,C, =1/2,y; = =Dy and y» = D; — D,. We similarly
find
, 3 1 1
h(x) = grXe + 5 X - ﬂ(xz - X1) +
The contribution of this vertex is therefore

576(D- F52(2)

1067

W(2,5) = ETTR

64

have { = t, = 0. The computations are easier in this case singe=C, = 0,y; = D;

For the vertex = (2,4), we have'; = (1,0) andr, = (0, 1). Sincev is integer, we T\
and y = D,. We find

h'(x) = %xlxz - ixz - ix L (2).

122 12 112

The contribution of this vertex is therefore

) 253
h (2, 4) = m

The total contribution of the vertices is then

1355+ 1067+ 253 61
288 288 144 6

and the total sum is
121 355 61

24+24+6 30.

Example 5.45 Consider the parametric polytope
P(N) ={X| % =2A3% <N+9A4< X <5}

If n > =3, then the vertices of this polytope d&4), (2,5), (3+n/3,4) and(3+n/3,5).
The contributions of the faces of) to

D, e
xeP(n)nz2

for the chamber r» —3 are shown ih Table 2. The final result is

(% —an(g)+ Zn+ 3(2)°- 23} +45 itn+320

5.15 Summation through exponential substitution and Lauremhex-
pansions

This section was inspired by Baldoni et al. (2008).
Let f(x) be the generating function of a polytopei.e.,

f= > x.

tePnzd

Substitutingx = €', we obtain

f@)= > ev=>3% Z%:Z[> t”])r']—:,

tePnzd tePnzd n>0 n>0 \tePnzd

65

n2+9n+45

42 4
T 33
2 | 8
L _
" _§n{n}+§n+9{n}2_§§{n}+§z
L 3+n/3 213/ 742 " al\3 413/ " 8
= 23 , 23 115
! 4 ! 216 12 24
L=]
g | 31 , 31 155
! ! 216 12 24
L

2

‘ (3+n/3,5) _§}{E}+§} +§}¥%._EE{E}+§¥
3 36 |3/ 72 " 2413 24 \3/ " 144
25 341
] J 144
T 253
QA‘ 144
r 23n{n}+ 23n+ 23{n}2 161{n}+ 437
! 3/ 772" 2413 24 \3/ " 144

(3+n/3,4) 36

Table 2: Contributions of the faces Bfn) to the sum ofx; x, over the integer points of
P(n)

66

with n! = ni!ny! - - - ng!. We observe that the sum of the monontiabver the integer
points inP is equal ton! times the cofficient of they" term in the Taylor expansion of
f(&).

As in the case of unweighted counting (5ee subsection 5l ave to add the
codficients of these monomials in the Laurent expansions of thesta (5.26). How-
ever, unlike the case of unweighted counting, we cannostoam this problem to a
univariate problem and computing the @dgent of a monomial in the Laurent expan-
sions does not reduce to computing thefiorent of a single higher-degree monomial
in a Taylor expansion.

Consider now one of the ternggx) = fi(x) in (5.26),

eZJ 1 Si(p)(bj.y)

9(e) = —(m

with wi;(p) = Z‘j’:l sj(p)b; written in terms of theb;, which are assumed to form a
basis and where we have made explicit the only place wherpatsneterp appear.
We rewrite this equation as

d .
—(bj,y» e5i(PXbj.y)
%= [ﬂ (bj, y>](n 1-ebiy) : (5.46)

The second factor is analytic and is a product of generatingtions Toddg;(p), (b, y))
of Bernoulli polynomials|(5.38). Plugging in these expiess, we find

—(bi, >e5j(p)<bj’)’>
Todd(s(p). (b y) =~ Y€

1 — &by
Z b(n, SJ(D))<bJ, gy
n=0

_ Z b(Z ki, Sj (p)) (Z ki)bkyk

@k k)

b(X ki, SJ(ID))

bkyk, (5.47)

R

with | 0
RETREEEEY

i=1
the multinomial cofficients. For the first factor, we compute the Laurent expansio

67

each of its factors,

-1 -1
bi.y) 39 bjyk

B -1

= s
bjrys (1 + _Zk_t;-: yflkyk)

Z(1y Zhoraa DYk)’
b]fo beyf
¥ N L 0y

= Z()(1)2 b bz nk+l 1’ (548)

n>0 Y

wherebj; is the first non-zero cdgcient ofb; and the vectob’ contains the subsequent
d - f codficients ofb;.
Given a polynomial

Ay:p) = > Am(P)y"

that we wish to sum over the integer points of a polyt®p&ve perform the following
operations for each unimodular cone in the decompositi@aoh vertex cone.

e For eachm with B (p) # 0

— Compute all sum$l = 2?21(0, - Yk Njk — 1, n;j) of exponents from (5.48)
such thatN < m and compute the corresponding fio@entyy in the prod-
uct of Laurent series by enumerating all combinationsdeading to the
sameN. Note that there are only a finite numberNfatisfying this con-
straint since}, Nx = —d. By reordering the variables such that the highest
exponents occurs for the first variable, the numbeX etin be reduced.

— For each of theshl
* Compute the ca@icientsm_n(p) of y"™ N in the product of Taylor ex-

pansions(5.47).
e The contribution of this cone is the sum of
mM! @ Bm(P) YN Om-n(P)
over all consideredn andN.

Within each vertex cone computation, the fiméentsyy anddm_n(p) only need to be
computed once.

Example 5.49 Consider once more the rational generating function
X2 X2 1

()= Ao a i) " T —c) T A= x)d-%)

68

from Verdoolaege (2005, Example 39) and Exarhple 5.30. Assanwant to compute

Z Vs + Y.

yeTnz?

We will need the following Bernoulli polynomials

b(0,5) =1

b(1,s) = % (-1+29

b(2,s) = é (1-6s+65)

b(3,s) = % (s-38*+2¢)

b(4,s) = 3io (-1+30s” - 60s® + 305")
For the first term, substitution yields

1 1 y A6y (y; — y2)ellvity2)
_)le1 -y, 1-en 1—e Yty

2
:i(i[l.‘_ﬁ.'.y_g.'.))
Yily1 yi oy
b(1,-2) b(2,-2)
(14 222 + 2

h(y)

b(3,-2)

b(4, -2)
31 *

32+ B+ B e

-1 1 1
(1 + 7(—)/1 +Y2) + 1—2(—)/1 +¥2)? + 0(=y1 +¥2)° + ﬁ)(—yl +y2)* + -)

We obtain the following results:

m N yayN M-=N SnnyY™N mlaBmyndm-n
721 721
_ 2 fed
(20) (-20) 1y; 4.0 3 40y‘1‘ 50
179 179
. 2 2,2
211 211
—_ 3 == ==
(-31) 1y (31) 120yiy1 50
721 721
_ 4,2 ==
(-42) Yy; (40 5 40y‘1‘ 50

69

For the second term, we similarly obtain

m N yNyN m-N (Sm—Nym_N M!aBmyNOm-N
1 1
(20) (-L-1) -lyp'y;' (31) gy -35
1 1
_ _ 2 __— _—
(-20) -y (4.0) -2 360
211 211
(O’ 2) (_ 19 _1) _1yIlY21 (1, 3) _H)ylyg E
179 179
_ _ 3 — - - -
1 1
(-3.1) -y, (3,1) @Yiyl ~30
1 1
_ _1v-Hh2 _ _—
Finally, for the third term, we obtain
m N VNyN m-N 5m—Nym_N M!aBmynOm-N
(27 O) (_ 15 _1) _1yI1y£l (35 1) Q)/iyl 0
0.2) (-1-1) -1y;'y;' (1.3) Oy1y3 0

Adding up all contributions in the final columns of these ¢sblve obtain a grand total
of

12

5.16 Conversion to “standard form”

Some algorithms or tools expect a polyhedron to be specifiéstandard form”, i.e.,

Ax =D 5.50
{ x> 0. (5:50)

Given an arbitrary (parametric) polyhedron
{x| Ax+ b(p) > 0}, (5.51)

a conversion to standard form requires the introductiodamfsvariables and a way of
dealing with variables of unrestricted sign. In this sattiee will be satisfied with a
reduction to the form

AX=b
{ (5.52)

Dx > c,
with D a diagonal matrix with positive entries. That is, we do natessarily make all
variables non-negative, but we do ensure that they have erlbaund. If needed, a
subsequent reduction can then be performed.

The standard way of dealing with variables of unrestricigd & to replace a vari-
ablex of unknown sign by the dlierence x = X' — X”) of two non-negative variables

70

(X,x” = 0). However, some algorithms are somewhat sensitive withae to the
number of variables and so we would prefer to introduce asfdva variables as pos-
sible. We will therefore apply a unimodular transformat@mnthe variables such that
all transformed variables are known to be non-negative.

The first step is to compute the HNF of A, i.e., a matdx= AU, with U unimod-
ular, in column echelon form such that the first entry in eaglimon is positive and
the other entries on the corresponding row are non-negatidestrictly smaller than
this first entry. By reordering the rows we may assume thatdhesquare part ofl is
lower-triangular. By a further unimodular transformatitime entries below the diago-
nal can be made non-positive and strictly smaller (in alisotalue) than the diagonal
entry of the same row.

For each of the new variables, we can take a positive combmaf the corre-
sponding row and the previous rows to obtain a positive mileltdf the corresponding
unit vector, implying that the variable has a lower bound lak variable can then be
introduced for each of the rows in the top square paH’‘ahat is not already a positive
multiple of a unit vector and for each of the rows below theggpare part oH’.

Example 5.53 Consider the cone

X| 67 13,50
-52 B3|"= 7
This cone is already situated in the first quadrant, but thésymot be obvious from
the constraints. Furthermore, directly adding slack vates would lead to a total

of 4 variables, whereas we can also represent this cone imdst@a form with only 3
variables. We have

S R R

-1331 287 -52 53|(-31 57}:AU'

Adding a slack variable for the second row of, ke obtain the equivalent problem

|-1331 2875 -1|x' =0
x>0
with
. -6 13 o
T |-31 57 ’
A similar construction was used by Eisenbrand (2000, Lemi@)3&and Hung and

Rom (1990).

5.17 Using TOPCOM to compute Chamber Decompositions

In this section, we describe how to use the corresponderaebe the regular triangu-
lations of a point set and the chambers of the Gale transfétimegoint set (Gelfand
et al. 1994) to compute the chamber decomposition of a pdranpolytope. This

71

correspondence was also used by Pfeifle and Rambau (20@8)sEsmidt and Kppe
(2007).
Let us first assume that the parametric polytope can be widtte

{ x=0 (5.54)
Ax < b(p),

where the right hand sid&p) is arbitrary and may depend on the parameters. The first
step is to add slack variableso obtain the vector partition problem

AX+1s=b(p)
X,5> 0,

with | the identity matrix. Then we compute the (right) keriedf the matrix|A 1],
ie.,

[A 1]k=0
and us&0PCOM’s points2triangs to compute the regular triangulations of the points
specified by the rows df. Each of the resulting triangulations corresponds to a eham
ber in the chamber complex of the above vector partition lerab Each simplex in a
triangulation corresponds to a parametric vertex activéhercorresponding chamber
and each point in the simplex (i.e., a rowkf corresponds to a variable;(or s;) that
is set to zero to obtain this parametric vertex. In the oabformulation of the prob-
lem (5.54) each such variable set to zero reflects the satrat the corresponding
constraint §; = 0 for x; = 0 and(aj,x) = bj(p) for s; = 0). A description of the
chamber can then be obtained by plugging in the parametriices in the remaining
constraints.

Example 5.55 Consider the parametric polytope
P(p,a,r)={(@i,))|0<i <pAO<j<2i+gA0<k<i-p+rAp>0Aq=0Ar >0}

The constraints involving the variables are

1 [i]> 0
1 jI= 0
1f[k[> O
1 0 Qfilcp
-1 0 1||jlc g
-2 1 0|kl —-p+r
We have
-1 0 O
1 0010 :i—ol_ol
-1 01 0 1 1 0 O=O
-2 1 0 0O 0 1 0
0O 0 1

Computing the regular triangulations of the rows of K usifaPCOM, we obtain

72

> cat e2.topcom

[

[-1 0 0]
[-2 0 -11]
[-1 -1 0]
[1 0 0]
[0 1 0]
[0 0 1]

1

> points2triangs --regular < e2.topcom
T[1]:={{0,1,2},{1,2,3},{0,1,4},{1,3,4},{0,2,5},{2,3,5},{0,4,5},{3,4,5}};
T[2]:={{1,2,3},{1,3,4},{2,3,5},{3,4,5},{1,2,5},{1,4,5}};
T[31:={{1,2,3},{1,3,4},{2,3,5},{3,4,5},{1,2,4},{2,4,5}};

We see that we have three chambers in the decomposition,ittn® vertices and
two with 6 vertices. Take the second vertex1(;2,3}") of the first chamber. This
vertex corresponds to the saturation of the constraints ¢, k > Oand i < p, i.e.,
@i, j,K) = (p,0,0). Plugging in this vertex in the remaining constraints, we get it is
only valid in case p> O, r > O and2p + g > 0. For the remaining vertices of the first
chamber, we similarly find

{0,1,2} (0,0,0) p>0,-q+r>0andg=>0

{1,2,3} (p,0,0) p>0,r>0and2p+q=>0

{0,1,4} (0,0,-p+r) —-q+r=0,p=0andg>0

{1,3,4} (p,0,r) p>0,r>0and2p+q=>0

{0,2,5} (0,9,0) q=0,p>0and-q+r >0

{2,3,5} (p,2p+0.0) p=0,2p+g=0andr>0

{0,4,5} (0,0,—-p+r) g=0,-q+r=>0and p=0

{3,4,5} (p,2p+q,r) p=0,2p+g=0andr>0
Combining these constraints with the initial constraintshe problem on the parame-
ters p> 0,g> Oandr > 0, we find the chambdi(p,q,r) | p> OA—p+r > 0AQ > 0}.
For the second chamber, we have

{1,2,3} (p,0,0) p>0,r>0and2p+q=>0
{1,3,4} (p,0,r1) p>0,r>0and2p+q=>=0
{2,3,5} (p,2p+0,0) p>0,2p+q=0andr>0
{3,4,5} (p,2p+0q,r) p>0,2p+q=0andr>0
{1,2,5} (-4,0,0) -q>0,2p+qg>0and-2p-q+2r >0

{1,4,5} (-3.0,-p-3+r) -q>0,-2p-q+2r>0and2p+q>0
The chamber is thereforg(p,g,r) | g = 0Ap > 0A—-p+r > 0}. Note that by

intersecting with the initial constraints this chamber longer full-dimensional and
can therefore be discarded. Finally, for the third chambes, have

{1,2,3} (p,0,0) p>=0,r>0and2p+q=>0
{1,3,4} (p,0,r) p=>0,r>0and2p+q=0
{2,3,5} (p,2p+09,0) p>0,2p+g=>0andr>0
{3,4,5} (p,2p+4q,r) p=0,2p+qg=0andr=0
{1,2,4} (p-r,0,0) p-r>0,r>0and2p+q-2r>0

{2,4,5} (p-r.2p+gq-2r,0) p-r>0,2p+q-2r>0andr>0
The chamber is therefotdp,q,r) |[p—-r>0Agq=>0ATr > 0}.

73

Now let us consider general parametric polytopes. Firs tiwt we can follow the
same procedure as above if we repladsy x’ — c(p) in (5.54), i.e., if our problem has

the form
X" > c(p)
AX" < b(p) + Ac(p),

as saturating a constraixt= 0 is equivalent to saturating the constraifit= ¢;(p) and,
similarly, (aj, x) = bj(p) is equivalent tda;, x) = b;(p) + (a;, c(p)).
In the general case, the problem has the form

(5.56)

AX = b(p)

and then we apply the technique of subsection|5.16.ALdte a non-singular square
submatrix of A with the same number of columns and compute the (left) HNE
A’U with U unimodular andH lower-triangular with non-positive elements below the
diagonal. Replacing by Ux’, we obtain

Hx" > b’(p)
_A//U X/ < _b//(p),

with A” the remaining rows oA andb(p) split in the same way. IH happens to be
the identity matrix, then our problem is of the form (5.56)5ame already know how
to solve this problem. Note that, again, saturating any etthnsformed constraints in
X’ is equivalent to saturating the corresponding constraixrt e therefore only need
to compute-A”U for the computation of the kernél. To construct the parametric
vertices in the original coordinate system, we can simpby/the original constraints.
The same reasoning holdsHf is any diagonal matrix, since we can virtually replace
Hx by x” without &fecting the non-negativity of the variables.

If H is not diagonal, then we can introduce new constrai«?ts: d(p), where
d(p) is some symbolic constant. These constraints do not remyeolutions since
each row inH expresses that the corresponding variable is greater thagual to a
non-negative combination of the previous variables plusesoonstant. We can then
proceed as before. However, to reduce unnecessary coliopstate may remove
from K the rows that correspond to these new rows. Any solutiorratitg the new
constraint, would also saturate the corresponding cdnstnga and all the constraints
corresponding to the non-zero entrie$1§n If a chamber contains a vertex obtained by
saturating such a new constraint, it would appear multipie$ in the same chamber,
each time combined with fierent constraints from the above set. Furthermore, there
would also be another (as it turns out, identical) chambeera/tihe vertex is only
defined by the other constraints.

Example 5.57 Consider the parametric polytope
Pn)={@,))I1<in2i<3jAj<n}.

The constraints are

1 0 i 1
-2 31]./=21]0
0o -1 -n

74

The top2 x 2 submatrix is already in HNF. We haaj > 2i > 2, so we can add a
constraint of the form c(n) and obtain

0 1 1
A =12 5 o ﬂ
while K with[A | K = 0is given by
1 0
0 1 1 0 1
2 -3 0 1|0 -1|
-2 3

The second row of K corresponds to the second variable, vhithrn corresponds to
the newly added constraint. Passing all rows of KTe®COM we would get

> points2triangs --regular <<EOF
> [[1 ®]1,[0,1]1,[0,-1],[-2,31]

> EOF
T[1]:={{0,1},{0,2},{1,3},{2,3}};
T[2]:={{0,2},{2,3},{0,3}};
T[3]:={};

The first vertex in the first chamber saturates the second row {) and therefore
saturates both the first (0) and fourth (3) and it appears aosectime as{1, 3}.
Combining these “two” vertices into one &9, 3} results in the second (identical)
chamber. Removing the row corresponding to the new comsti@m K we remove
the duplicates

> points2triangs --regular <<EOF
> [[1 0]1[01_1]1[_2!3]]

> EOF
T[1]:={{0,1},{1,2},{0,2}};
T[2]:={};

Note that in this example, we also could have interchangedséitond and the third
constraint and then have replaced j by'.

In practice, this method of computing a chamber decomposdbes not seem to
perform very well, mostly becausgOPCOM can not exploit all available information
about the parametric polytopes and will therefore compuaynredundant triangula-
tiongchambers. In particular, any chamber that does not intevgét the parameter
domain of the parametric polytope, or only intersects ince faf this parameter do-
main, is completely redundant. Furthermore, if the parampblytope is not simple,
then many dferent combinations of the constraints will lead to the saarampetric
vertex. Many triangulations will therefore correspond tee@nd the same chamber
in the chamber complex of the parametric polytope. For exanipr a dilated octa-
hedron,TOPCOM will compute 150 triangulatiorishambers, 104 of which are empty,
while the remaining 46 refer to the same single chamber.

75

5.18 Computing the Hilbert basis of a cone

To compute the Hilbert basis of a cone, we usestdwl ve library from4ti2 (Hemmecke
et al.), which implements the technique of Hemmecke (2002 first remove all
equalities from the cone through unimodular transfornmatiand then apply the tech-
nique off subsection 5.16 to put the cone in “standard formbteNthat for a (non-
parametric) cone the constant telnin (5.51) isO. The constraint®x > ¢ = 0 of
(5.52) are therefore equivalentxa> O.

5.19 Integer Feasibility

For testing whether a polytogec QY contains any integer points, we use the technique
of Cook et al. (1993), based on generalized basis reduction.

The technique basically looks for a “short vecterih the latticeZ, where short-
ness is measured in terms of the width of the polytB@dong that direction,

widthe P = max {(c,x) | x € P} —min{{c,x) | x € P}
=maxX{(c,Xx-Yy)|x,yeP}.

Thelattice widthis the minimum width over all non-zero integer directions:

widthP = min width; P.
cezZ4\(0}

If the dimensiond is fixed then the lattice width of any polytoge ¢ QY contain-
ing no integer points is bounded by a constant (Lagarias. 4198I0; Barvinok 2002;
Banaszczyk et al. 1999). If we slice the polytope using hylaeres orthogonal to a
short direction, i.e., a direction where the width is sma#, will therefore only need to
inspect “few” of them before either finding one with an integeint, or running out of
hyperplanes, meaning that the polytope did not contain at@ger points. Each slice
is checked for integer points by applying the above methodrsively.

A nice feature of this technique is that it will not only tebhy if there is any integer
point in the given polytope, but it will actually compute oifithere is any.

The short vector is obtained as the first vector of a “reduesish of the latticez®
with respect to the polytope. In particular, the first vedipof this reduced basis will

satisfy P
wi

d-1°
1
(2-)

widthy, P <

with 0 < & < 1/2 a fixed constant. That is, the width in directibpis no more than
a constant factor bigger than the lattice width. See (Coal.€1993) for details. In
our implementation we use= 1/4. When used in the above integer feasibility testing
algorithm, we will also terminate the reduced basis comjmriaas soon as the width
along the first basis vector is smaller than 2. This meansttiesé will be at most 2
slices orthogonal to the chosen direction.

The computation of the above reduced basis requires thé@olof many linear
programs, for which we use any of the following external scdv

76

e GLPK (Makhorin 2006)

This solver is based on double precision floating point arétic and may there-
fore not be suitable if the cdigcients of the constraints describing the polytope
are large.

e cdd (Fukuda 1993)

This solver is based on exact integer arithmetic. Note tloat iyeed version
cddlib 0.94e or newer. Earlier version®(93-0.94d) have a bug that may
sometimes result in a polytope being reported as (ratighathpty even though
it is not.

e piplib (Feautrier 2006)

This solver is also based on exact integer arithmetic and trgedual simplex
method to solve a linear program. Two versions are availakihe will present
the original program t@iplib, while pip-dual will present the dual program
to piplib, effectively having it apply the primal simplex method to theginal
problem. The latter may seem more appropriate since the a@tign of the
reduced basis only requires the dual solution of any lineaggam. However, in
practice, it appears thatip is often faster thapip-dual.

The LP solver to use can be selected with thgbr option.

5.20 Computing the integer hull of a polyhedron

For computing the integer hull of a polyhedron, we first diggchow to compute the
convex hull of a set given as an oracle for optimizing a lingajective function over
the set and then we explain how to optimize a linear objedtimetion over the integer
points of a polyhedron. Applying the first with the second jpismization oracle yields
a method for computing the requested integer hull.

5.20.1 Computing the convex hull based on an optimization @cle

The algorithm described below is presented by Cook et aBZ1Remark 2.5) as an
extension of the algorithm by Edmonds et al. (1982, Sectipfo computing the
dimensionof a polytope for which only an optimization oracle is avhla The al-
gorithm is described in a bit more detail by Eisenbrand (2@G0@ reportedly stems
from Hartmann (1989). Essentially the same algorithm hss laéen implemented by
Huggins (2006), citing beneatieyond (Preparata and Shamos 1985) as his inspiration.
The algorithm start out from an initial set of points from g&S. After computing
the convex hull of this set of points, we take one of its bongdionstraints and use
the optimization oracle to compute an optimal poinSiifbut on the other side of the
bounding hyperplane) along the outer normal of this boumpdionstraint. If a new
point is found, it is added to the set of points and a new cofndkis computed, or
the old one is adapted in a benghttyond fashion. Otherwise, the chosen bounding
constraint is also a bounding constraintSand need not be considered anymore. The

77

Figure 5.58: The integer hull of a polytope

process continues until all bounding constraints in thedieson of the current convex
hull have been considered.

In principle, the initial set of points in the above algontimay be empty, with
a “convex hull” described by a set of conflicting constraiatgl each equality in the
description of any intermediate lower-dimensional conkiah being considered as a
pair of bounding constraints with opposite outer normalsweler, in our implemen-
tation, we have chosen to first compute a maximal seffofedy independent points by
first taking any point fron and then adding points froi& not on one of the equal-
ities satisfied by all points found so far. This allows us td have to worry about
equalities in the main algorithm. In the case of the companabf the integer hull,
finding these flinely independent points can be accomplished using the itpahof

subsection 5.19.

Example 5.59 Assume we want to compute the integer hull of the polytopeeiteft
part of Figure 5.58. We first compute a set of thrgféenaly independent points, shown
in the same part of the figure. Of the three facets of the cpmading convex hull,
optimization along the outer normal (depicted by an arrovihie figure) of only one
facet will yield any additional points. The other two areréfere facets of the integer
hull. Optimization along the above outer normal may yielg ahthe points marked
by ao. Assuming it is the bottom one, we end up with the updatedezdmll in the
middle of the figure. This convex hull has only one new facddlingy the point found
by optimizing over this facet’s outer normal, we obtain tbevex hull on the right of
the figure. There are two new facets, but neither of them yighy further points. We
have therefore found the integer hull of the polytope.

5.20.2 Optimization over the integer points of a polyhedron

We assume that we want to find thenimumof some linear objective function. When
used in the computation of the integer hull of some polytdhe,objective function
will therefore correspond to the inner normal of some facet.

During our search for an optimal integer point with respecdme objective func-
tion, we will keep track of the best point so far as well as adotwound and an upper
boundu such that the value at the optimal point (if it is better thHaa¢urrent best) lies
between those two bounds. Initially, there is no best poittand values fol andu

78

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5.60: The integer points of a polytope projected onlgactive function

may be obtained from optimization over the linear relaxatid/hen used in the com-
putation of the integer hull of some polytope, the upper ldbwis one less than the
value attained on the given facet of the current approxivnati

As long ad < u, we perform the following steps

e use the integer feasibility technique|of subsection 5.1&$b whether there is
any integer point with value il Ju’], whereu' is

— uif the previous test for an integer point did not produce apoi

-1+ {&z_lJ if the previous test for an integer poidid produce a point

e if a pointis found, then remember it as the current best apldceu by the value
at this point minus one,

e otherwise, replackby u’ + 1.

When used in the computation of the integer hull of some pplytdt is useful to not

only keep track of the best point so far, but of all points fdulmhese points will all lie

outside of the current approximation of the integer hull adding them all instead of
just one, will typically get us to the complete integer huliaker.

Example 5.61 Assume that the values of some objective function attaigetiebin-
teger points of some polytope are as shown in Figure 5.60 asdrae we know that
the optimal value lies between 1 and 16. In the first step wddnook for a point
attaining a value in the intervdll, 16]. Suppose this yields a point attaining the value
8 (second line of the figure). We record this point as the curbast and update the
search interval td1, 7]. In the second step, we look for a point attaining a value @ th
interval [1, 4], but find nothing and set the search interval[$07]. In the third step,
we consider the intervdb, 7] and find a point attaining the value 6. We update the
current best value and set the search interval3b]. In the fourth step, we consider
the interval[5, 5], find no points and update the interval t¢6;5]”. Since the lower
bound is now larger than the upper bound, the algorithm teates, returning the best
or all point(s) found.

79

5.21 Computing the integer hull of a truncated cone

In|subsection 5.22 we will need to compute the integer hudl ocbne with the origin
removed C \ {0}).

5.21.1 Using the Hilbert basis of the cone

As proposed by Kppe (2007), one way of computing this integer hull is to fi@in-
pute the Hilbert basis of (se€e subsection 5.18) and to then remove from that Hilbert
basis the points that are not vertices of the integer hut §80}. The Hilbert basis of
C is the minimal set of pointd; € C N Z% such that every integer poirte C n Z¢
can be written as a non-negativdegercombination of thes;. The vertices/; of the
integer hull ofC \ {0} are such that every integer point (C nZ%) \ {0} can be written
as s non-negativeational combination ofv;. Clearly, anyv; is also ab; sincev; can
not be written as the sum of a (rational) convex combinatiootioer integer points in
(Cnz%\ {0} and a non-negative combination of the extremal raysf C. A fortiori,
it can therefore not be written as an integer combinationtieéointeger points itC.
To obtain thev; from theb; we therefore simply need to remove first @) and then
thoseb; that are not an extremal ray and tleahbe written as a combination

bi= > ajbj+ > A withej,fc>0and) ey =1

j#i k j#

Since thery are also among thk;, this can be simplified to checking whether there
exists a rational solution faz; to

bi=>ab; withae;>0and) aj>1

j#i j#i

Example 5.63 Consider the cone
C = pos{(z, _3)’ (3’ 4)}’
shown in Figuré 5.62. The Hilbert basis of this cone is
{(07 O)’ (2’ _3)’ (3’ 4)’ (17 1)’ (1’ _1)7 (1’ 0)}

We have(1,0) = 3(1,1) + 3(1,-1), while (1,1) and (1, -1) can not be written as
overconvex combinations of the othgr+ 0. The vertices of the integer hull of G0}

are therefore
{(2’ _3)’ (3’ 4)’ (1’ 1)’ (13 _1)}

5.21.2 Using generalized basis reduction

Another way of computing the integer hull of a truncated cizn® apply the method
ofsubsection 5.20. In this case, the initial set of pointh ednsist of (the smallest
integer representatives of) the extremal rays of the cagsther with the extremal

80

Figure 5.62: The Hilbert basis and the integer hull of a taied cone

81

T
Figure 5.64: The integer hull of a truncated cone

rays themselves. That is,@f = posir;} withr; € 74, then our initial approximation of
the integer hull ofC \ {0} is
conv{r} + posir}.

Furthermore, we need never consider any of the boundingtreams that are also
bounding constraints of the original cone. When optimizilegg the normal of any of
the other facets, we can take the lower bound to be 1. Thisewdlure that the origin
is excluded, without excluding any other integer points.

Example 5.65 Consider once more the cone
C = pos{(2,-3), (3,4)}
from Example 5.63. The initial approximation is
C = conv{(2, -3), (3,4)} + pos{(2, -3), (3,4)},

which is shown on the left of Figure 5/64. The only boundingst@int that does not
correspond to a bounding constraint of C7g —y > 17. In the first step, we will
therefore look for a point minimizingx — y with values in the interva]l, 16]. All
values of this objective function in the given interval aital by points in C are shown
inFigure 5.60. From Example 5.61, we know that the optim&le#s 6 and this cor-
responds to the poir{il, 1). Adding this point to our hull, we obtain the approximation
in the middle of Figure 5.64. This approximation has two naeefs. The bounding
constraint3x — 2y > 1 will not produce any new points since we would be looking for
one in the interval {1, 0]”. The other new bounding constraint4x+y > 5. Minimiz-
ing 4x + y with values in the intervdll, 4], we find the minimal valu& corresponding
to the point(1, —1). Adding this point, we obtain the complete integer hull sham
the right of Figure 5.64. Note that if in the first step we wolué/e added not only the
point corresponding to the optimal value, but instead alhg®found in Example 5.61,
then we would have obtained the complete integer hull direct

82

5.22 Computing the lattice width of a parametric polytope

To compute the lattice width of a parametric polytope, wepsally use the technique
of Eisenbrand and Shmonin (2007), which improves upon tbenigue of Kannan
(1992). Given a parametric polytope

P(p) = {x| Ax+b(p) = 0},

the width along a directionis defined in the same way as for non-parametric polytopes

(seé subsection 5.19),
width; P(p) = max (c,x) | x € P(p) } — min{{c,x) | x € P(p) }. (5.66)
Thelattice widthis the minimum width over all non-zero integer directions:

width P(p) = Ce%i\?o} width; P(p).

We assume that the parameter dom@iof P(p), i.e., the set of parameter values for
which P(p) # 0, is full-dimensional and that for eaghfrom the interior ofQ, P(p) is
also full-dimensional.

Clearly, for any given direction, the minimum and maximum in (5.66) are attained
at (different) vertices oP(p). The idea of the algorithm is then to consider all pairs
of parametric vertices dP(p), to compute all candidate integer directions for a given
pair of vertices and then to compute the minimum width ovércahdidate integer
directions found.

For any given parametric vertexXp), the (rational) directions for which this ver-
tex is minimal can be found as follows. Lefp) + C be the vertex cone of(p). If
v(p) is minimal for ¢, then all other points in the vertex cone must yield a bigger o
equal value, i.e{y,c) > 0 for ally € C. The set of directions is therefore the po-
lar coneC* of C. Note that, in principle, we should only do this for pairs efitices
that have a common activity domain, where the activity domwdiave been partially
opened using the technigue of Theorem 5.12 to avoid muliigrtices that coincide on
a lower-dimensional chamber to all be considered on thersection. However, this
optimization has currently not been implemented.

Given a pair of vertices; (p) andv,(p), we may assume thai(p) attains the mini-
mum andv,(p) attains the maximum. Wy(p)+C; andv,(p)+C, are the corresponding
vertex cones, then the set of (rational) directions for plaiis of vertices is

Ci2 = (C1 N -C3) \ {0}.

The set of candidate integer directions are therefore théces of the integer hull of
C12, which can be computed as explained in subsection 5.21. élthig note that by
construction(c, v1(p)) < (c,Vv2(p)) and so

We(p) = widthe P(p) = (c, v2(p) — v1(p)) = O.

Any integer direction inC;, will therefore yield a width that is at least as large as
that of one of the vertices of the integer hull. Note that wheimg generalized basis

83

Figure 5.67: A polytope and its candidate width directions

reduction to compute the integer hull of these cones as iauhsgection 5.21.2, it can
be helpful to use as vertices for the initial approximation only the extremal rays of

the cone, but also those vertices of previously computedjerthulls that are elements
of the current cone.

After computing a list of all possible candidate width diiensc; and the corre-
sponding widthsvg, (p), we keep only a single direction of all those that yield tame
width (as an fiine function of the parameters). Then we construct the cheswiigere
each of the widths is minimal, i.e.,

Ci={peQlVY]:wg(p) < w(p)}

Note that many of th€; may be empty or of lower dimension than Q and that the
otherC; will intersect in common facets. To obtain a partition of tiadly-open full-
dimensional chambers, we proceed ds in subsection 5.4.

Example 5.68 Consider the (non-parametric) polytope

-3x1+5% >0
4x; — 5% >0
X1—2% +3>0
-3X1+4x,+3>0

84

B

i i A El I B

— - - -

Figure 5.69: The cone of directio®3 1

shown in Figure 5.67. The polytope has four vertices

vi = (9, 6)
Vo = (5, 4)
v3 = (0,0)
vy = (5,3).

The corresponding cones of directions (for the given vetteattain the minimum),
also shown in Figure 5.67 are
C; = pos{(_3a 4)’ (1’ _2)}
C; = pos{(4,-5), (1, -2)}
C; = pos{(4, _5)a (_3’ 5)}
C, = pos{(-3,5), (-3, 4)}.
Let us now consider the directions in whighis minimal whilev, is maximal. We
find
C2,1 = pos{(4’ _5)’ (3’ _4)} \ {0}’
as shown in Figure 5.69. The vertices of the integer hull of &e (4, -5) and (3, -4).
The corresponding widths are
C]_ = (4, _5) WC1 = 6
C=(3-4) w, =4
We similarly find
C3,1 = pos{(4’ _5)5 (_1’ 2)} \ {0},

85

Figure 5.70: The cone of directio®s 1

I
i i R

- - - -

[T N

ST T S

.1

Figure 5.71: The cone of directio

86

Figure 5.72: A polytope and its lattice width directions

with integer hullpos{(4, -5), (-1, 2), (1, —1)}, shown in Figure 5.70, yielding

C3=(4,-5) wg, =6
Ca=(-12) wg=3
cs=(1,-1) wg =3
On the other hand,
Ca1=0,

as shown in Figure 5.71 and so this combination does not yialdwidth direction
candidates. The other pairs of vertices further yield

CG=(-12) wg,=3

c7=(-3,5) wg,=5

Cg=(-3,4) w,=4

Co=(-35) W =5

Cio=(-23) wg, =3
Since the polytope under consideration is not paramethiere is only one (non-empty,
O-dimensional) chamber and it corresponds to one of the toas, sayc, = (-1, 2),

with width 3 (the other directions with the same width having been remhpove
Each of the three directions that yield the minimal width &f $hown in Figure 5.72.

87

Example 5.73 Consider the polytope

-2X1+p+5=0

2x1+p+5=0
P(p) = ¢ X|

-2% -p+5>0

2% -p+5=0

from Woods (2004, Example 2.1.7). The parametric vertioes a

va(p) = (p;—S, p+5)
vlp) = (%5'0—)

walp) = (B2, B2
w(p) = (B 5"’—;5)

We find two essentially gierent candidate width directions

C1 = (07 1) WCl(p) =
c2=(L0) wg(p)=5+p.

The first direction can be found by combining, sayp) andv,(p), while the second
direction can be found by combining, say(p) andvs(p). The parameter domain for
the parametric polytope () is

Q={pl-5<p<5}
The two (closed) chambers are therefore

={peQ|5-p<5+p}
={peQI5+p=5-p}

To obtain a partition| subsection 5.1 gives the internalmp@®, 0), which happens to
meet the facets p 0 and —p > 0. We therefore keep the facet with positive (inner)
normal closed and open up the other facet. The result is

={pl0<p<5)
= {p|-5<p<0).

Since we are usually only interested in integer parametéues the latter chamber
would becom€&, = {p|-5<p<-1}.

Our description dters slightly from that of of Eisenbrand and Shmonin (2007).
First, they consider all pairs of basic solutions insteadlbpairs of vertices, which

88

means that they may consider basic solutions that are neasibfe and that, in case of
a non-simple polytope, they may consider the same paranwvetriex more than once.
The set of integer directions for a pair of vertices is therisé¢ction of the sets of integer
directions they obtain for each of the corresponding badigtions. Second, they use
a different method of creating a partition of partially-open cbars, which may lead
to some lower-dimensional chambers surviving and hencdaogar total number of
chambers.

5.23 Testing whether a set has an infinite number of points

In some situations we are given the generating function ofesmteger set and we
would like to know if the set is infinite or not. Typically, weant to know if the set

is empty or not, but we cannot simply count the number of efémi the standard
way since we may not have any guarantee that the set has omjtearfumber of

elements. We will consider the slightly more general casere/twve are given a rational
generating functiorf (x) of the form [(5.26) such that

f)= > c9x° (5.74)

seQnzd

converges on some nonempty open subs€pf) is a pointed polyhedron arafs) >
0, and we want to compute
S= Z (9, (5.75)
seQnzd

where the sum may diverge, i.e$"“= o”". The following proposition shows that
we can determin& in polynomial time. For a sketch of an alternative technjcgee
Woods (2005, Proof of Lemma 16).

Proposition 5.76 Fix d and k. Given a rational generating function of the fof&26)
with k < k and a pointed polyhedron @ QY, then there is a polynomial time algo-
rithm that determines for the corresponding functigs) 5.74)whether the sur(b.75)
diverges and computes the value of5575)if it does not.

Proof SinceQ is pointed, the series (5.74) converges on a neighborhoad ef

(€, ...,€%) for any ¢ such that(r, £) < 0 for any (extremal) ray of Q and such
that(bj;, £) # 0 for anybj; in (5.26). Leta = —¢ and perform the substitution= t°.

The functiong(t) = f(t?) is then also a (short) rational generating function and

any= > | > co|t= > dit,

ke(@,Q)NZ | seQnzd ke(@,Q)NZ
(a,9)=k

with (e, Q) = {(@,X) | X € Q}, converges in a neighborhood®f', while

S= Z d(K).
ke(a@,Q)NZ

89

Sincec(s) > 0, we haved(k) > 0 and the above sum divergéiany of the cofficients
of the negative powers dfin the Laurent expansion @j{t) is non-zero. If the sum
converges, then the sum is simply the ii@méent of the constant term in this expansion.
It only remains to show now that we can compute a suitatile polynomial time,
i.e., ana such thakry, @) > 0 for any (extremal) rayy of Q and(b;;, @) # O for any
bij in (5.26). By adding the to the list ofb;; if needed, we can relax the first set of
constraints tqry, @) > 0. LetQ be described by the constraims + ¢ > 0 and let
B bed x d non-singular submatrix of, obtained by removing some of the rows/Af
Such aB exists since) does not contain any straight line. Cleaiy, > 0 for any ray
r of Q. Let bi’j = Bbjj, then sinced;; # 0 and B is non-singular, we ha\h% # 0. We
may therefore find in polynomial time a poiat > 0 on the “moment curve” such that
(bi’j,o/> # 0 (Barvinok and Pommersheim 1999, Algorithm 5.2). ket B'e’. Then
(bij, @) = (bjj, B'e’) = (Bbjj,) = (b];,a’) # 0 and(r, @) = (r¢, B'a’) = (Bry, @) >
0, as required. Note that in practice, we would, as usual, fiysatfixed nhumber of
random vectorg’ > 0 before resorting to looking for a point on the moment curve.

O
5.24 Enumerating integer projections of parametric polytopes
In this section we are interested in computing
co(s) = #{t €z uezZ™: (st,u)e P}, (5.77)

with P ¢ Q" x QY x Q™ a rational pointed polyhedron such that

P = {(t,u) eQ¥xQM|(st,u) e P}

is a polytope for anys. This is equivalent to computing the number of points in the
integer projection of a parametric polytope

c(s) = #(m(Ps N Z+™M)),

with 7 : Q4 x Q™ — QU defined byx(t,u) = t. Exponential methods for computing
c(s) are described by Verdoolaege et al. (2005a) and Seghiraachiner (2006). Here,
we provide some implementation details for the polynomiathod of Barvinok and
Woods (2003, Theorem 1.7), for computing the generatingtfan, >, c(s) x5, which
can then be converted into an explicit functiofs) (Verdoolaege and Woods 2008,
Corollary 1.11). Note that in contrast to Barvinok and Wo¢2803, Theorem 1.7),
we may allowP to be an unbounded (but still pointed) polyhedron here (ag ks
Ps is bounded), since we replace their application of Kann&9Z1 Lemma 3.1) by
Eisenbrand and Shmonin (2007, Theorem 5).

If there is only one existentially quantified variabta € 1), then computing (5.77)
is easy. You simply shifP by 1 in theu direction and subtract this shifted copy from
the original,

D =P\ (en+d+1 + P)-

(See, e.g., Barvinok and Woods (2003, Figure 1, page 973)ealodlaege (2005,
Figure 4.33, page 186).) In thefféirenceD there will beexactlyone value ofu for

90

each value of the remaining variables for which there atdeastone value ol in P,
Y(st): (Qu:(st,u)eP) < (J'u:(st,u)eD).

The functionc(s) can then be computed by counting the number of elemerii¥sh
These operations can be performed either in the space anoif) parametric poly-
topes or on generating functions. In the first cd3és) can be written as a disjoint
union of parametric polytopes that can be enumerated geparén the second case,
we first compute the generating functib(x, y) of the set

S={(st)|ueZ:(st,u)eP}

and then obtain the generating functiofx) of ¢(s) asC(x) = f(x, 1). In the remainder
of this section, we will concentrate on the computation &f ¢fenerating function of
S. To compute this generating function in the current caseravligere is only one
existentially quantified variable, we first compute the gatirg functiong(x, y, 2) of
P(s,t,u), perform operations on the generating function equivailerihe set opera-
tions (see, e.g., Verdoolaege (2005, Section 4.5.3))/thegun a generating function
g (x,Y, 2), and then sum over all values (at most one for each valgandt) of u, i.e.,
fx,y)=g(cy.1).

If there is more than one existentially quantified variabte X 1), then we can
in principle apply the above shifting and subtracting tegha recursively to obtain a
generating functiorf (x, y) for the set

T={(st)|JueZ™: (st,u) P} (5.79)

and then comput€(x) = f(x,1). There are however some complications. Most no-
tably, after applying the technique in one direction andgmting out the corresponding
variable, the resulting set, i.e.,

S={(st,Us,...,Un1) | JUn € Z: (St,u) € P},

in general does not correspond to the integer points in satyéope. For example, as-
sume that the polytope in Figure 5,78 contains the valuesastociated to a particular
value of ,t). Since there are integer points in this polytope, we shoaoldht this value
of t, but only once. If we apply the above technique in the vertiagection (U,), then
we can compute (a generating function for) theshown on the bottom of the figure.
Note, however, that there are “gaps” in this set, i.e., if @mputeS \ (ey,q+1 + S) then
we will not end up with a single point (for this value & {)). Since the biggest gap is
three wide, we need to compute

S \ (en+d+l + S) \ (Zen+d+1 + S) \ (gen+d+l + S)

to obtain a single point. If we do the subtraction in the hamial direction first, then
we end up with a set (shown on the left) with gaps at most twewsd afterwards we
only need to subtract twice in the vertical direction.

In general, there is no bound on the widths of the gaps we magustter in
any given direction. However, there are directions in whithd gaps are known to

91

—h—— bk — - = -

R e e e e
\
\

!
4 _ 4 __ 4 _ 1 __1__1__ L __L__L__L_
! !
! !
A T
| |
| |
T
!
!
-t -t~ T -~ T - —t-—-—t——t—-—F-—
! !
! !
e e e e A S el et il el e
!

R T B B e
e e R B

Figure 5.78: A polytope and its integer projections

Figure 5.80: A transformed polytope and its integer pragect

92

be “small”. In particular, if the dimensiom is fixed, then the lattice width (see
[subsection 5.22) of lattice point free polytopes is bourted constani(m) (Lagarias
et al. 1990; Barvinok 2002; Banaszczyk et al. 1999). Thismadhat in the direction
of the lattice width of a polytope, the gaps will be not be &arthanw(m) (Barvinok
and Woods 2003, Theorem 4.3). Otherwise, we would be ableit@ guniformly)
scaled down version of the polytope in the gap and it wouldaiomo lattice points,
which would contradict the fact that its lattice width is moled byw(m). [Figure 5.78
contains such a scaled down copy of the original polytopevéver, neither the hori-
zontal nor the vertical direction is a lattice width directiof this polytope. The actual
lattice width of this polytope was computed in Example 5.68awith correspond-

ing directionc = (-1, 2). |Figure 5.80 shows the result of applying the unimodular
transformation

-1 2

0 1

to the polytope. Note that the horizontal direction now hapsgof width at most 1.
After shifting, subtracting and projecting in the verticidection, we therefore end up
with a setS with gaps of width 1 and we then only have to shift and subtoace in
the remaining (horizontal) direction.

In fact, for two-dimensional polytopes the gaps in the ¢attividth direction will
always be one, as shown by the following lemma.

Lemma 5.81 For any rational polygon, the gaps in a lattice width direxti are of
width at most 1.

Proof We may assume thatis the given lattice width direction of a given polygén

If there is a gap of width 2, then there is an integer vaduef x such thaPn{ (xy,y) } #
0,PN{(x¢+2Yy)}#0,whilePn{(x;+ 1Y)} NZ? = 0. Using Barvinok and Woods
(2003, Lemma 4.2), we can put a scaled down c&pyf P betweenx = x; and
X = X1 + 2 (and inside o). P” meets the linex = x; + 1 between two consecutive
integer pointsy; andy; + 1. LetP” be the polygon bounded by= x; andx = X3 + 2
and two lines that separak from these two integer point®?” will have the same
width (2) in thex direction, whileP” c P”. The x direction is therefore also a lattice
width direction ofP”. P” cannot intersect botk = x; andx = x; + 2 in a segment
of length greater than or equal to 1. Otherwise, it would a&i$ersectx = x; + Lina
segment of length greater than or equal to 1.

We may therefore assume that the length of the intersecfi®Y avith x = X3 is
smaller than 1. If this line segment contains an integertptien call ity,. Otherwise,
lety, be the greatest integer smaller than the points in the ligmeat. We may assume
thaty; = y,. Otherwise, we can apply the unimodular transformation

X

e 3
Y| (ya-y2 1)1y
without changing the width in directiorn If P” contains ki, y1), it intersectsx = x;
in a segmenty — a1, Y1 + az]. We may then similarly assume that > a;. P will

only cutx = x; + 2 in points withy-coordinate smaller than2 . The width in the
y direction will therefore be smaller than2a, + a1 < 2, contradicting thak is a

93

Figure 5.82: Lattice point free polygon with lattice width 2

lattice width direction. IfP” does not containy, y1), then it only intersectg = x; in
points withy-coordinatey; + @ with 0 < @ < 1. Given any such point, it is clear that
P” intersectsx = x; + 2 only in points withy-coordinate strictly betweeyy — o and
y1 + 1 — @, again showing that the width in tlyedirection is smaller than 2 and leading
to the same contradiction. The contradiction shows thattban be no gaps of width
2 in the lattice width direction oP. m]

Note that thew(2) bound is too coarse to reach the above conclusion(as > 2.
An example of a polygon with lattice with greater than 2 is plodygon with vertices
(-17/110,83/110), (210, -9/10) and (17790, 100/90), shown in Figure 5.82, which
has width 221110.

The idea of the projection algorithm is now to first find a diiec in which the
gaps are expected to be small and to unimodularly transfbarexistentially quan-
tified variables such that this direction lies in the direntbf one of the transformed
variables. Then, the remaining existentially quantifiedalzles are projected out by
applying the technique recursively. The resulting gemegafunction will have gaps
at mostw(m) wide and so we have to subtract at magtm) shifted copies of this
generating function before we can plug in 1 to project outsthlected (and now only
remaining) existentially quantified variable. We now lodleach of these step in a bit
more detail.

We are given a polyhedroR such thatPs is a polytope and we want to compute a

94

generating functiorf (x, y) for the setT in (5.79). We first compute the lattice width
directions of them-dimensional parametric polytofe; as in_subsection 5.22. The
result is a partition of the parameter domain, i.e., thegqmtipn of P onto the firsin + d
coordinates, into partially open polyhedpg together with the lattice width direction

¢ corresponding to ead;. Since the generating functions only encode integer points
we can replace each open fa¢atx) + b > 0 by the closed faceg,x) + b— 1> 0to
obtain a collection of closed polyhed@. Now let

Pi=PnQxQ"
and letfi(x, y) be the generating function of the set
Ti={(st)[JueZ™: (st,u) e P}

Then clearly,

oY) = D hikky).

From now on, we will consider a particul& with corresponding lattice width and
drop thei subscript.

We are now given a polyhedrddsuch that the lattice width direction &%; is c.
We first extend to anmxmunimodular matrixJ using the technigue of subsection 5.7,

CT
U= U,}
and then compute
I, 0 O
PP=({0 Ig O|P
0O 0 U

We have
T={(st)|Au eZ™: (st,u) e P},

i.e., we may have changed the values of the existentiallytified variables, but we
have not changed the st Now consider the set

T ={(st,u) | AU, ...,u) € Z™: (st,u) e P}

This set has onlyn — 1 existentially quantified variables, so we may apply thiggx-
tion algorithm recursively and obtain the generating fiorctf’(x, y, 2) for T’. The set
T’ may no longer correspond to the integer points in a polytbpg,by construction,
the gaps in the final coordinate are smallg(m)).

By now we have a generating functidf(x, y, z) for the sefT’ (with small gaps in
the final coordinate) and we have to compute the generatmgifn f(x, y) for T. By
computing

Llw(m)]

(¢, y,2) = P'(x,y.2) €D (Z1'(x.y.2), (5.83)
k=1

95

where® represents the operation on generating functions tha¢sponds to set dif-
ference on the corresponding sets, we obtain a generatingdasetT” where only
the smallest value af is retained. The total number ofs associated to ang,t) is
therefore either zero or one and so the “multiset” definedakingy as many copies of
(s t) as there are associated valuesipis actually the set. That is

foxy) = £7(x.y, 1).

The only remaining problem is that the™ operation in[(5.83) is fairly expensive.
In particular, this operation is performed by first compgtthe Hadamard product of
the two generating functions (which corresponds to thesetetion of the sets) and then
subtracting the resulting generating function from thistfgenerating function. The
last operation is fairly cheap, but the Hadamard productahi@®e complexity which
while polynomial if the dimension (in this case the maximufikan (5.26)) is fixed,
is exponential in this dimension. Furthermore, this dinleméncreases by mak — d
on each successive application of the Hadamard producle wizixk; > d as soon as
some projection is performed, which certainly happens érécursive application of
the algorithm. Now, the total number of Hadamard productmoisnded by a constant
Lw(m)] and so the increase in dimension is also bounded by a constatite whole
operation is still polynomial for fixed dimension. Nevetdss, we do not want to
perform any additional Hadamard products if we do not rebflye to. That is, we
would like to be able to detect when we can stop performingdhaperationdefore
reaching the upper bound(m)].

Let f5(x,y,2) = f'(x,y, 2) and letf/ (X, y, 2) be the result of applying the “setftir-
ence” in|(5.83k times. Denote the corresponding setsTyand T,. We want to find
the smallesk such thatf”(x,y,2) = f/(x,y,2). Note that we are talking about equal-
ity of rational functions here. Any further application diet set diference operation
will not change this rational function, butwill typically produce a dferent (more
complex) representation. To check whether the cukestsuticient, we are going to
count how many times any elementTfstill appears in a shifted copy @f,, with shift
greater than or equal to+ 1. If this number is zero, any further sefférence will have
no dfect. That is, we want to compute

00

Z |T|/ N (en+d+l + T’)
I=k+1

)

or, in terms of generating functions,

00

h(x,y,2) = Z f/(x,y,2 x 2 f'(x,y,2).

I=k+1

We should point out here that while the Hadamard produstérresponds to intersec-
tion when applied to generator functions of indicator fimas (i.e., with coéficients
one or zero), in general it will produce a generating funtiidth codficients that are
the product of the corresponding ¢beients in the two operands. We can therefore

96

rewrite the above equation as

00

h(x,y,2) = Z f/(x.y,2 *Z f'(x,y,2)

I=k+1

= f/(x,Y,2) *[Z Z (XY, z)]
I=k+1
241 f/(x,y, 2)

= f/
A

Computingh(x, y, 1) would give us a generating function with as fimgents how many
times a point off still appears in a shifted copy af, for any particular value of and
t. However, we want to know if this number is zero fat values ofs andt, so we
computeh(1,1, 1) instead. We have to be careful here since we allow the pdiginP
to be unbounded and so we should apply the technique of didrs&c23 withQ the
projection ofP on the remaining coordinates.

Note that testing whether we can stop is more expensive fhyagiag the next iter-
ation (since we have an extra<{1z) factor in the denominator of one of the operands).
However, we may save many iterations by stopping early ansviveot needlessly
replace a given representation ©f(X, y, 2 by a more complex representation (with
more factors in the denominator). An alternative way of élveg whether we can stop
is to test whethef(x,y,2) = f, ,(X,y,2) (as rational functions). To do so, we would
need to check that both

fl: (X’ y’ Z) - (flz(x’ y’ Z) * flé+l(x7 y7 Z))

and

’

fo1(XY,2) - (flg(x, Y,2) % fe, (XY, z))
are zero and this Hadamard product is more expensive thamthabove.

Example 5.85 Consider once more the parametric polytope

-2X1+p+5=0

2X1+p+5=0
P(p) = ¢ X|

-2% -p+5>0

2% -p+5=0
from Woods (2004, Example 2.1.7) and Example]5.73 and assement to compute
c(p) = [Hx €Z?: (p.x) € P].

That is, we simply want to know for which values of p the pplyte non-empty. Now,
there are more ficient ways of answering this particular question, but we usk it
here as an example of the above algorithm. The polytdpe iB shown in Figure 5.84
for all integer value of the parameter for which the polytép@on-empty.

97

_51%

| | | | o |
S T H EE o o E Y R E L
| | | | | | | |
| | | | | | | |
T Y H L L L
| | | | | |
| | | | | |
4 4 __ Lk L
, , , ,
| | | |
4 - .
| |
| |
e |
| |
4= -
| Il | |
| Ke) | |
e Bl - =t r
| | | | | |
| | | N | | |
T T T T T - T - -t r
| | | | | | | |
[[[| < [[[[
T T T T T T T T T T T T T r
| | | | | | | |

O e e e e R B

Figure 5.84: The parametric polytope from Example 5.85 ffiiecent values of the

parameter

98

| U U S

|

|

‘Xl

|

I
e

3

1

I
—_d _—ad - -4 - -

[I 0
|

S | | |

—dm—d et =t -4 --F-|-F+-|-F+ - ===

[e e N B

O O O S B

| | | .
AT T I T R Ao
BT T TR TR o) B			
, , , , ,			
AT P PR TR PN W			
1, 1, 2, 2, 3, (9p]			
RTINS PO PO PO P			
, I I B T			
PP BN P P			
o			
, , , , ,			
		I R	
Pt —— e —— ¢ — ¢ — ¢ —			
—H— e —t——t—— — —¢ —
, , , , ,
, , , , ,
- - -t - -t ——t——t—— -
| | | | |
| | | | |
e B T e e e el
| | | | |
, , , , ,
- -7 - T~ - T-~—T -~ —
| | | | |

”,

Figure 5.86: The transformed parametric polytope from ExaiB.85 for O< p< 5

99

The first step is to compute the lattice width ¢HP In Example 5.73, we already
obtained the decomposition of the parameter domain into

Ci={pl0<p<5)
Co={pl-5<p=<-1},

with corresponding lattice widths and lattice width directs

c=(0,1) we(p)=5-p
Cc2=(1,0) We,(p)=5+p.

Note that in this example, the gaps in both coordinate dioestarel, so, in principle,
there is no need to perform any unimodular transformatiore hslevertheless, we will
apply the transformation that would be applied by the altfori. On the first domain,
we extend the lattice width direction to the unimodular rixatr

0 1
1 0
After application to the existentially quantified variabbe we obtain the parametric
polytope
-2%+p+5=0
2% +p+5=>0
Pi(p)=9x| -2x-p+5=>0
2X1-p+5=0
p>0

shown in the top part of Figure 5.86. We now temporarily reenihie existential quan-
tification on x, resulting in

T ={(p,x) €Z?|Ixp € Z: (sX) € P'}.

Since there is only one existentially quantified variabfe lee know we only have to
shift and subtract the set once to obtain a set with at mostvahee of % associated
to each value ofp, x;). In particular, let f(x,z,2) be the generating function of
the integer points in P Then dx,z;) = f'(X,z, 1), with ' (x,z1,2) = f(X,z1,2) —
f(X, z1,) * f(X, 21, 2), is the generating function of T
To check whether we need to subtract any shifted copieéxaf; from itself, we

compute
Al g(xs Zl)

1-z '
The second argument of this Hadamard product is depictedguaré 5.86 by its coef-
ficients. The exponents irff)z;) that have a non-zero cficient are therefore those
marked by both a doe] and a number. The total sum can be computedasih = 26,
which is finite, but non-zero. We therefore need to subtraleast one shifted copy of
d(x, 7). Let

h(X, Zl) = g(X, Zl) *

g'(X z1) = 9(x, z1) — 9(X z1) * 229(X, Z2).

100

Computing
X, Z
x2) = g (k2 w 05

we would find that t{1, 1) = 0 and so we do not need to shift and subtract any further.
However, since we are dealing with a two-dimensional pnoblee already know from
[Theorem 5.81 that we can stop after one shift and subtraciyesdo not even need
to compute Kx, z) here. The function’gx, z;) now only has non-zero cgieients for
at most one exponent of for each exponent of x. We may therefore project down to
obtain the function gx, 1), which is the generating function of the set in the lower left
part of Figure 5.86.

For the chambe€, of the parameter domain, the computations are nearly idahti
and the final result is simply the sum of the two generatingtfans found for each of
the two (disjoint) chambers.

101

6 Publications

6.1

Publications about the Library

This is a list of some reports and publications explainingitieof parts of théarvinok
library.

Analytical computation of Ehrhart polynomials and its apafions for embed-
ded systems (Verdoolaege, Beyls, Bruynooghe, Seghir, aadhner; 2004b)

Analytical computation of Ehrhart polynomials and its apgtions for embed-
ded systems (Verdoolaege, Beyls, Bruynooghe, Seghir, aadhner; 2004c)

Analytical Computation of Ehrhart Polynomials and its Aipption in Compile—
Time Generated Cache Hints (Seghir, Verdoolaege, Beytsl.aachner; 2004)

Analytical computation of Ehrhart polynomials: Enablingma compiler analy-
ses and optimizations (Verdoolaege, Seghir, Beyls, Loagland Bruynooghe;
2004d)

Experiences with enumeration of integer projections ofapsatric polytopes
(Verdoolaege, Beyls, Bruynooghe, and Catthoor; 2004a)

Experiences with enumeration of integer projections ofapsatric polytopes
(Verdoolaege, Beyls, Bruynooghe, and Catthoor; 2005a)

Computation and Manipulation of Enumerators of Integefjétimns of Para-
metric Polytopes (Verdoolaege, Woods, Bruynooghe, andsCa605hb)

Incremental Loop Transformations and Enumeration of PatamnSets (Ver-
doolaege; 2005)

Symbolic Polynomial Maximization over Convex Sets and itgpAcation to
Memory Requirement Estimation (Clauss, Ferdez, Gabervetsky, and Ver-
doolaege; 2006)

Counting with rational generating functions (Verdoolaege Woods; 2008)

Counting integer points in parametric polytopes using Beok/s rational func-
tions (Verdoolaege, Seghir, Beyls, Loechner, and Bruyhepg007b)

Polynomial Approximations in the Polytope Model: Bringiting Power of Quasi-Poly-
nomials to the Masses (Meister and Verdoolaege; 2008)

Bounds on Quasi-Polynomials for Static Program Analyssi3, Verdoolaege,
Van Campenhout, and Stroobandt; 2007)

Computing parametric rational generating functions witrienal Barvinok al-
gorithm (Koppe and Verdoolaege; 2008)

An Implementation of the Barvinok—Woods Integer Projett#dgorithm (Kdppe,
Verdoolaege, and Woods; 2008)

102

¢ Algorithms for Weighted Counting over Parametric PolytapA Survey and a
Practical Comparison (Verdoolaege and Bruynooghe; 2008)

6.2 Publications Refering to the Library

This is a list of some reports and publications refering ®tlarvinok library.

e Theorems of Brion, Lawrence, and Varchenko on rational ggimg functions
for cones (Beck, Haase, and Sottile; 2005)

e Generating Cache Hints for Improved Prograffidiency (Beyls and D’Hollander;
2005)

¢ An alternative algorithm for counting lattice points in awex polytope (Lasserre
and Zeron; 2005)

e \olume Calculation and Estimation of Parameterized Intég@ytopes (Rabl;
2006)

e Improved Derivation of Process Networks (Verdoolaege piik, and Stefanov;
2006)

e Computing the Ehrhart quasi-polynomial of a rational siexdBarvinok; 2006)

e Memory Optimization by Counting Points in Integer Transfations of Para-
metric Polytopes (Seghir and Loechner; 2006)

e GRAPHITE: Polyhedral Analyses and Optimizations for GCOFSilber, Co-
hen, Bastoul, Girbal, and Vasilache; 2006)

e \olume Computation for Polytopes and Partition Functioms@lassical Root
Systems. (Baldoni-Silva, Beck, Cochet, and Vergne; 2006)

¢ A primal Barvinok algorithm based on irrational decompiosis (Koppe; 2007)

¢ pn: A Tool for Improved Derivation of Process Networks (Meothege, Nikolov,
and Stefanov; 2007a)

e On Ehrhart Polynomials and Probability Calculations inivgtTheory (Lepel-
ley, Louichi, and Smaoui; 2008)

e Local Euler-Maclaurin formula for polytopes (Berline andrygne; 2006)

103

References

Baldoni, V., N. Berline, and M. Vergne (2008, March). Sum iolkadtice points of a
polygon with iterated Laurent series. user’s guide. [1[65]

Baldoni-Silva, M. W., M. Beck, C. Cochet, and M. Vergne (2D0é&bIlume compu-
tation for polytopes and partition functions for classigabt systemsDiscrete
& Computational Geometry %), 551-595. [[1083]

Banaszczyk, W., A. E. Litvak, A. Pajor, and S. J. Szarek (19@@ust). The flatness
theorem for nonsymmetric convex bodies via the local theélyanach spaces.

Mathematics of Operations ResearcH@y 728—750. [76,93]
Barvinok, A. (2002).A Course in ConvexityWolume 54 ofGraduate Studies in
MathematicsProvidence, RIl: American Mathematical Society. ~[76, 93]

Barvinok, A. I. (1992). Computing the volume, counting &l points, and expo-
nential sums. IfProceedings of the eighth annual symposium on Computdtiona

geometrypp. 161-170. ACM Press. [B3]
Barvinok, A. I. (1994). Computing the Ehrhart polynomialaotonvex lattice poly-
tope.Dicrete Comput. Geom. 135-48. [35]

Barvinok, A. I. (2006). Computing the Ehrhart quasi-polgmial of a rational sim-
plex.Math. Comp. 751449-1466. [1103]

Barvinok, A. I. and J. Pommersheim (1999). An algorithmiedty of lattice points
in polyhedraNew Perspectives in Algebraic Combinatorics 38-147.

[48,190]
Barvinok, A. I. and K. M. Woods (2003, April). Short rationgénerating functions
for lattice point problems]. Amer. Math. Soc. 1®57-979. 190, 93]
Beck, M., C. Haase, and F. Sottile (2005). Theorems of Brlamwrence, and
Varchenko on rational generating functions for cones. [J103
Berline, N. (2007, August). personal communication. [1[58]
Berline, N. and M. Vergne (2006, July). Local Euler-Maclauiormula for poly-
topes. httpyarXiv.org/abgmath0507256. [[56, 57, 60, 103]
Beyls, K. and E. D’Hollander (2005, 4). Generating cacheshiar improved pro-
gram dficiency.Journal of Systems Architecture(d@), 223—-250. [103]
Bik, A. J. C. (1996).Compiler Support for Sparse Matrix Computatiof®. D.
thesis, University of Leiden, The Netherlands. [1[44]
Brion, M. (1988). Points entiers dans les padyes convexednnales Scientifiques
de I'Ecole Normale Supérieure. Quatrieme Seéri¢431653-663. [13B]
Bueler, B., A. Enge, and K. Fukuda (2000). Exact volume colj for poly-
topes: A practical study. DMV Seminar Band 29. [[46]

104

Clauss, P. and V. Loechner (1998, July). Parametric arsabfgiolyhedral iteration
spacesJournal of VLSI Signal Processing (19, 179-194. [T4]

Clauss, P., F. J. Feandez, D. Gabervetsky, and S. Verdoolaege (2006, October).
Symbolic polynomial maximization over convex sets andislization to mem-
ory requirement estimation. ICPS Research Report 06-Oigelité Louis Pas-

teur. 102]
Cohen, J. and T. Hickey (1979). Two algorithms for determgniolumes of convex

polyhedraJ. ACM 2§3), 401-414. [46]
Cook, W., M. Hartmann, R. Kannan, and C. McDiarmid (1992).if@teger points

in polyhedraCombinatorica 121), 27-37. [77]

Cook, W., T. Rutherford, H. E. Scarf, and D. F. Shallcros€98)9 An implemen-
tation of the generalized basis reduction algorithm foedgetr programming.

ORSA Journal on Computind®. [17,76]
De Loera, J. A. (1995, May)riangulations of Polytopes and Computational Alge-
bra. Ph. D. thesis, Cornell University. [[46]

De Loera, J. A., D. Haws, R. Hemmecke, P. Huggins, J. Tauref,Ra Yoshida
(2003, November). A user's guide for latte v1.1. softwareka@eLattE is
available ahttp://www.math.ucdavis.edu/~latte/. [21,48]51]

De Loera, J. A., R. Hemmecke, J. Tauzer, and R. Yoshida (2@&#)ctive lattice
point counting in rational convex polytopekhe Journal of Symbolic Computa-
tion 384), 1273-1302.

De Loera, J. A. and M. Kppe (2006). Experiments with an algebraic scheme for
estimating the number of lattice points in polyhedra. Manips$ in preparation.
[33,(47]

Devos, H., S. Verdoolaege, J. Van Campenhout, and D. Stnaibi§2007). Bounds
on quasi-polynomials for static program analysis. maripstr preparation.

102]
Edmonds, J., L. Lo&sz, and W. R. Pulleyblank (1982). Brick decompositions and
the matching rank of graph€ombinatorica 23), 247-274. [[717]

Ehrhart, E. (1977)Polyndmes arithmétiques et Méthode des Polyedres en-Co
binatoire, Volume 35 of International Series of Numerical Mathematics

Base/Stuttgart: Birkhauser Verlag. _[41, 42]
Eisenbrand, F. (2000, Julygaomory-Chvatal cutting planes and the elementary clo-
sure of polyhedraPh. D. thesis, Universit des Saarlandes. - [71,177]

Eisenbrand, F. and G. Shmonin (2007). Parametric integegramming in fixed
dimension. [83,/88[90]

Eisenschmidt, E. and M. &ppe (2007). Integrally indecomposable polytopes and
the survivable network design problem. Eiectronic proceedings of the 6th
International Workshop on the Design of Reliable CommuidocaNetworks,

105

DRCN 2007 To appear.

Feautrier, P. (1988). Parametric integer programmipgerationnellgperations

Research 2@), 243-268.
Feautrier, P. (2006). Solving systems dfirze (in)equalities: PIP’s user’s guide.
[26,77]

Fukuda, K. (1993). cdd.c: C-implementation of the doublscdiption method for
computing all vertices and extremal rays of a convex polytiediven by a sys-
tem of linear inequalities. Technical report, Departmdriathematics, Swiss
Federal Institute of Technology, Lausanne, Switzerlanogam available from
httpy/www.ifor.math.ethz.chfukudafukuda.html. 77

Gawrilow, E. and M. Joswig (2000). polymake: a frameworkdoalyzing convex
polytopes. In G. Kalai and G. M. Ziegler (EdsBplytopes — Combinatorics

and Computationpp. 43—74. BirkAuser. 130]
Gelfand, I. M., M. Kapranov, and A. V. Zelevinsky (1994)iscriminants, Resul-
tants and Multidimensional DeterminanBirkhauser, Boston. [[71]

Gomory, R. E. (1963). An algorithm for integer solutionsiteelhr programming. In
R. L. Graves and P. Wolfe (EdsRecent Advances in Mathematical Program-

ming, New York, pp. 269-302. McGraw-Hill. [[26]
Hartmann, M. E. (1989)Cutting planes and the complexity of the integer hah.

D. thesis, Ithaca, NY, USA.
Hemmecke, R. (2002). On the computation of hilbert basesoés. World Scien-

tific. [76]

Hemmecke, R., R. Hemmecke, MoKpe, P. Malkin, and M. Walter. 4ti2 — a soft-
ware package for algebraic, geometric and combinatorialblpms on linear
spaces. Available atww.4ti2.de.

Henrici, P. (1974)Applied and Computational Complex Analy$tsire and applied
mathematics. New York: Wiley-Interscience [John Wiley &Sh Volume 1:
Power series—integration—conformal mapping—Ilocation obgePure and
Applied Mathematics.

Huggins, P. (2006)iB4e A software framework for parametrizing specialized LP
problems. In A. Iglesias and N. Takayama (EJdEOMS 2006, Proceedings of
the Second International Congress on Mathematical Soéwéaume 4151 of
Lecture Notes in Computer Scienpp. 245-247. Springer. [[77]

Hung, M. S. and W. O. Rom (1990, October). An application & kiermite nor-
mal form in integer programmindiinear Algebra and its Applications 1415),

163-179. [71]
Kannan, R. (1992). Lattice translates of a polytope and thbéhius problemCom-
binatorica 142), 161-177. [83,/90]

106

www.4ti2.de

Kelly, W., V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, ans@nnacott (1996a,
November). The Omega calculator and library. Technicabrepniversity of
Maryland.

Kelly, W., V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, antMdnnacott (1996b,
November). The Omega library. Technical report, UnivgreftMaryland. [31]

Koppe, M. (2006). LattE macchiato, version 1.2-mk-0.7.1, icaproved ver-
sion of De Loera et al’s LattE program for counting integeoings
in polyhedra with variants of Barvinok’s algorithm. Availe from URL

http://www.math.uni-magdeburg.de/~mkoeppe/latte/. [48,/51]
Koppe, M. (2007). A primal Barvinok algorithm based on iratkl decompositions.

SIAM Journal on Discrete Mathematics(2), 220-236. [[35, 51, 103]
Koppe, M. (2007, June). personal communication. [][80]

Koppe, M. and S. Verdoolaege (2008). Computing paramettiona generating
functions with a primal Barvinok algorithnThe Electronic Journal of Combi-
natorics 15 #R16. [37,57/102]

Koppe, M., S. Verdoolaege, and K. M. Woods (2008, July). Anleamentation
of the barvinok—woods integer projection algorithm. In MedR and T. Stoll
(Eds.), The 2008 International Conference on Information Theorg Statisti-
cal Learning [102]

Lagarias, J. C., H. W. Lenstra, Jr., and C.-P. Schnorr (19R06jkin-zolotarev
bases and successive minima of a lattice and its recipratizdd. Combina-

torica 10(4), 333-348. [76,/93]
Lasserre, J. B. and E. S. Zeron (2005). An alternative alyorfor counting lattice
points in a convex polytopdlath. Oper. Res. 30 [103]

Lee, C. W. (1991). Regular triangulations of convex polgm@\pplied Geometry
and Discrete Mathematics — The Victor Klee Festschrif4B—456. [[46]

Lepelley, D., A. Louichi, and H. Smaoui (2008, April). On Blart polynomials and
probability calculations in voting theorocial Choice and Welfare 88), 363—
383. [103]

Loechner, V. (1997)Contribution a I'étude des polyedres paramétrés gplaya-
tions en parallélisation automatiquéh. D. thesis, University Louis Pasteur,
Strasbourg. [22]

Loechner, V. (1999, March). Polylib: A library for maniptileg parameterized
polyhedra. Technical report, ICPS, Univegsitouis Pasteur de Strasbourg,

France. [4/5,08/22, 32, 42]

Loechner, V. and D. K. Wilde (1997, December). Parametdnm#yhedra and their
vertices International Journal of Parallel Programming 26), 525-549. [[4]

107

http://www.math.uni-magdeburg.de/~mkoeppe/latte/

Loechner, V., B. Meister, and P. Clauss (2002). Preciselda#dity optimization of

nested loops]. Supercomput. Z1), 37-76. [32]
Makhorin, A. (2006, July). Gnu linear programming kit, nefece manual, version
4.11. [77]

Meister, B. (2004, Decembe$tating and Manipulating Periodicity in the Polytope
Model. Applications to Program Analysis and OptimizatiBh. D. thesis, ICPS,
Universi€& Louis Pasteur de Strasbourg, France. ~ [[14, 45]

Meister, B. and S. Verdoolaege (2008, April). Polynomiapmximations in the
polytope model: Bringing the power of quasi-polynomialstihe masses. In
J. Sankaran and T. Vander Aa (EdBigest of the 6th Workshop on Optimization
for DSP and Embedded Systems, ODES-6 [102]

Parker, E. and S. Chatterjee (2004, April). An automatasi algorithm for
counting solutions to Presburger formulasCompiler Construction 20Q4/0l-
ume 2985 of_ecture Notes in Computer Scien&erlin, pp. 104-119. Springer-
Verlag.

Pfeifle, J. and J. Rambau (2003). Computing triangulatisirggoriented matroids.
In M. Joswig and N. Takayama (EdsAlgebra, Geometry, and Software Sys-
tems pp. 49-75. Springer. [72]

Pop, S., G.-A. Silber, A. Cohen, C. Bastoul, S. Girbal, andvakilache (2006).
GRAPHITE: Polyhedral analyses and optimizations for GC&hhical Report
A/378CRI, Centre de Recherche en Informatiqfieple des Mines de Paris,
Fontainebleau, France. Contribution to the GNU CompilerfieCtion Devel-
opers Summit 2006 (GCC Summit 06), Ottawa, Canada, Juned22086.

[103]
Preparata, F. P. and M. I. Shamos (1985, AuguBomputational Geometry: An
Introduction (Monographs in Computer Sciencgpringer. 77

Pugh, W. (1994). Counting solutions to Presburger formuldew and why. In
SIGPLAN Conference on Programming Language Design andeimgahtation

(PLDI'94), pp. 121-134. [55]
Rabl, T. (2006, January). Volume calculation and estinmatibparameterized inte-
ger polytopes. Master’s thesis, UniveéiPassau. [[46, 103]

Sakellariou, R. (1996, Octobeidn the Quest for Perfect Load Balance in Loop-
Based Parallel Computation®h. D. thesis, University of Manchester. | [55]

Sakellariou, R. (1997, August). Symbolic evaluation of suor parallelising com-
pilers. In A. Sydow (Ed.)Proceedings of the 15th IMACS World Congress on
Scientific Computation, Modelling and Applied Mathematitsume 2 ofWis-

senschaft- Technik Verlagpp. 685-690. [151]
Scarf, H. E. (1981, March). Production sets with indivikitas-part Il: The case of
two activities.Econometrica 4@), 395-423. [[16]

108

Scarf, H. E. and K. M. Woods (2006). Neighborhood complexes generating
functions for dfine semigroupsDiscrete & Computational Geometry §5),
385-403.

Seghir, R. (2002, June).@mombrement des point entiers de I'union et de I'image
des polydres paragtres. Master’s thesis, ICPS, Univegsitouis Pasteur de
Strasbourg, France. [11]

Seghir, R., S. Verdoolaege, K. Beyls, and V. Loechner (26@%ruary). Analytical
computation of Ehrhart polynomials and its application ampile-time gen-
erated cache hints. Technical Report 118, ICPS, Unietsiuis Pasteur de
Strasbourg, France. [102]

Seghir, R. and V. Loechner (2006, October). Memory optititraby counting
points in integer transformations of parametric polytope#roceedings of the
International Conference on Compilers, Architecturesd &ynthesis for Em-
bedded Systems, CASES 2006, Seoul, Korea [90,/103]

Shoup, V. (2004). NTL. Available frorhttp: //www.shoup.net/ntl/. [12]
Stanley, R. P. (1986Enumerative Combinatoric§olume 1. Cambridge University

Press.
Stanley, R. P. (1993). A monotonicity property of h-vectarsl h*-vectorsEuro-
pean Journal of Combinatorics (3), 251-258. [130]

Tawbi, N. (1994). Estimation of nested loops execution timénteger arithmetic in
convex polyhedra. IfProceedings of the 8th International Parallel Processing
Symposiunpp. 217-221. IEEE Computer Society Press. [1[51]

Turjan, A., B. Kienhuis, and E. Deprettere (2002, July). Anpile time based ap-
proach for solving out-of-order communication in Kahn pse networks. In
IEEE 13th International Conference on Aplication-spec8igstems, Architec-
tures and Processors (ASAP’2002)

Van Engelen, R. A, K. Gallivan, and B. Walsh (2006, Septemi#arametric tim-
ing estimation with the Newton-Gregory formuldeurnal of Concurrency and
Computation: Practice and Experience(18), 1434-1464. [51, 53]

Verdoolaege, S. (2005, Aprillncremental Loop Transformations and Enumeration
of Parametric SetsPhd, Department of Computer Science, K.U.Leuven, Leu-

ven, Belgium. [8, 10, 11, 12, 14, 16, 17, 21,224|/27, 50, 5669790, 91| 102]

Verdoolaege, S., K. Beyls, M. Bruynooghe, and F. Cattho@042a, October).
Experiences with enumeration of integer projections ofpwatric polytopes.
Report CW 395, K.U.Leuven, Department of Computer Sciend@L =
httpy/www.cs.kuleuven.ac.lggublicatiegrapporteficw/CW395.abs.html. [102]

Verdoolaege, S., K. Beyls, M. Bruynooghe, R. Seghir, and &&dhner (2004b,
March). Analytical computation of Ehrhart polynomials atdapplications for
embedded systems. Bnd Workshop on Optimization for DSP and Embedded

109

Systems, ODES-2 102]

Verdoolaege, S., K. Beyls, M. Bruynooghe, R. Seghir, and \dedh-
ner (2004c, jan). Analytical computation of Ehrhart polgrials and
its applications for embedded systems. Report CW 376, [Depar
ment of Computer Science, K.U.Leuven, Leuven, Belgium. URL
httpy/www.cs.kuleuven.ac.lygublicatiegrapporteyfcw/CW376.abs.html.

102]

Verdoolaege, S., R. Seghir, K. Beyls, V. Loechner, and M.yBooghe (2004d,
September). Analytical computation of Ehrhart polynostiaEnabling more
compiler analyses and optimizations. Pnoceedings of International Confer-
ence on Compilers, Architectures, and Synthesis for Emdab8gstems, Wash-
ington D.C, pp. 248-258. [102]

Verdoolaege, S., K. Beyls, M. Bruynooghe, and F. Cattho60%2). Experiences
with enumeration of integer projections of parametric pgbes. In R. Bodik
(Ed.), Proceedings of 14th International Conference on Compilenstruc-
tion, Edinburgh, Scotland/olume 3443 ol_ecture Notes in Computer Science
Berlin, pp. 91-105. Springer-Verlag. [190, 102]

Verdoolaege, S., K. M. Woods, M. Bruynooghe, and R. Cool9%2). Computation
and manipulation of enumerators of integer projectionsamédmetric polytopes.
Report CW 392, Dept. of Computer Science, K.U.Leuven, LauBelgium.

[102]

Verdoolaege, S., H. Nikolov, and T. Stefanov (2006, Marémproved derivation
of process networks. ldth Workshop on Optimization for DSP and Embedded
Systems, ODES-4 103]

Verdoolaege, S., H. Nikolov, and T. Stefanov (2007a). pn:o#l for improved
derivation of process networkEURASIP Journal on Embedded Systems, spe-
cial issue on Embedded Digital Signal Processing Syste@a 20 [103]

Verdoolaege, S., R. Seghir, K. Beyls, V. Loechner, and M.yBaoghe (2007b,
June). Counting integer points in parametric polytopesgiBarvinok’s rational
functions.Algorithmica 4§1), 37-66. [[102]

Verdoolaege, S. and M. Bruynooghe (2008, July). Algoritfionsveighted counting
over parametric polytopes: A survey and a practical corspariln M. Beck and
T. Stoll (Eds.),The 2008 International Conference on Information Theorgt an
Statistical Learning [103]

Verdoolaege, S. and K. M. Woods (2008). Counting with raglarenerating func-
tions.J. Symb. Comput. 43), 75-91. [[90, 102]

Wilde, D. K. (1993). A library for doing polyhedral operati®. Technical Report
785, IRISA, Rennes, France.
httpy/www.irisa.fyEXTERNEbibli/pi/pi785.html. 4]

110

Woods, K. M. (2004)Rational Generating Functions and Lattice Point Séts. D.

thesis, University of Michigan. _[88, 97]
Woods, K. M. (2005). Computing the period of an Ehrhart quemdynomial. The

Electronic Journal of Combinatorics 1R34. [89]
Woods, K. M. (2006, June). personal communication. [1[42]

List of Acronyms

IcTel» S greatest common divisor

HNF........... Hermite Normal Form

1701 (T least common multiple

LLL........... Lenstra, Lenstra and Lovasz’ basis reduttlgorithm
PIP............ Parametric Integer Programming
SNF........... Smith Normal Form

111

Index

--convert,|24+26 barvinok_bound, |1, 27
--direct,[26 barvinok_count, 1,15/ 21| 26
--direction,/29 barvinok_count_with_options,[15
--enable-fractional,[§ barvinok_ehrhart,1, 26
--enable-incremental,[8 barvinok_enumerate, 1,15/ 22| 26, 27,
--explicit,[24 29,42[44
--floor,|24-26 barvinok_enumerate_e,|1/15) 24-27
--gbr,[77 barvinok_enumerate_e_series,[16
--help, 21 barvinok_enumerate_ev, 15
--lower,[28 barvinok_enumerate_pip,/15,25
--omega, /25 barvinok_enumerate_scarf,/16
--pip,[25 barvinok_enumerate_scarf_series,/16
--series,[24/26 barvinok_enumerate_with_options,/[15
--summation,|27 barvinok_options,[6,/8/15
--variables,[27,/28 barvinok_options_new_with_defaults,
--verbose,[27,)28 18
--version,[2] barvinok_series,[16
-?,121 barvinok_series_with_options,/16, 44
-v,[21 barvinok_summate,/1,26] 32
-c,[24-26 barvinok_union,|1],[25
-d,[26,29 barycenter, 33, 46
-e,[24 basis
-£,[24-26 reducedseereduced basis
-0,[25 Bastoul, C.103[108
-p,125 Beck, M./103 /104
-s,[24/26 beneatfbeyond| 77
-v,[27,28 Berline, N.} 56/57,/57,58,160,/103 104
4ti2,[76 bernoulli,[27
Bernoulli number, 49, 53, 58, 62

affine embedding, 43 Bernoulli polynomial, 58, 67
arr,’5 Bernoulli polynomials, 69

. bernstein,[1,18
Bueler, B., 46,104 Bernstein cofficient, 18, 20, 32

Baldoni, V.] 65,104 bernstein: :pi .
g ::piecewise_lst,[20
Baldoni-Silva, M. W.[103[104 bernstein_optimize,[20
Banaszczyk, W., 76, 93.04 bernsteinExpansion,18

barvinok, E,MB’I@BE&EOZ Beyls, K. ,’T.Z ,mm @,m

103 big parameter, 26
availability, 21 Bik, A. J. C.[44/104
Barvinok’s decomposition, 35, 60 bmax, 32 |
Barvinok, A.] 76, 93104 box,[27
Barvinok, A. 1.,(33,35/48, (48,190, 93, gion's polarization trick, 35
103104 Brion, M.,/35/104

112

Bruynooghe, M/102] 103109, 110
BV_BERNSTEIN_MAX,
BV_BERNSTEIN_MIN,
BV_BERNSTEIN_NONE, 20

card,
Catthoor, F/102[109/ 110
cdd, |77

chamber decomposition, 56,75
characteristic cong, 33
Chatterjee, S., 32,08
Chernikova,
Clauss, P, 4102,/105/108
Cochet, C/103/104
coeff,[13
Cohen, A.|103/108
Cohen, J/, 46105
common refinemernit, 19
compressed parameter, 14
compute_evalue,[11
compute_poly,/11
cone

simple,seesimple cone
configure,[§
constituent, 41
Constraint,[4,21
constructParameterVector,[18
constructVariableVector,[18
context,[14
convex hull} 18
Cook, W.[17|, 76, 77105
Cools, R.[102 /110
count_lexsmaller, 32
cutting plane, 26

d, 5,12
D’Hollander, E.[103[104

De Loera, J. Al, 21, 33, 35, 4648, 305

Deprettere, E[109

Devos, H.[102,[105
Dimension, /4
DomainConstraintSimplify, 17
DomainIncludes,/17
DomainSimplify,[19
domainVertices,|18

double description,]8

dual simplex, 77
dual space, 35

eadd,[10,/11

Edmonds, J, 77105
eequal,/12

Ehrhart quasi-polynomial, 26
Ehrhart series, 26

Ehrhart, E.[41, 42105

Eisenbrand, F., 71, 77, 83,188, 9m5

Eisenschmidt, E., 72,05
emul,[10

Enge, A.[104

enode, 4,/5,9[11
Enumeration,/5,/9) 15
eor,[11

esum, 11

euler, 27
Euler-Maclaurin formula

local, seelocal Euler-Maclaurin for-

mula

evalue,/4,5/9+12, 15, 20

evalue_bernstein_coefficients,[18,

20
evalue_eval,[11
evalue_frac2floor,/8,/11
evalue_sum,/11
example,[26
explicit representation, 33
exponential substitution, 48

facet

open,seeopen facet
Feautrier, P[26,126, 77/106
Ferrandez, F. J102,[105
flooring,[9,/11] 12| 24-26
fractional,[9}/11] 12, 24-26
Fukuda, K., 77104/106
fundamental parallelepiped3

Gabervetsky, D.102 105
Gale transforni, 71
Gallivan, K./109
Gawrilow, E.] 30106
Gelfand, I. M.] 71/106
gen_fun,[13, 14] 44

113

gen_fun: :add,[14

gen_fun: :coefficient,/14
gen_fun: :Hadamard_product,/14
gen_fun::operator evalue *, 14
gen_fun::substitute,[14
generalized basis reduction, 76
generalized reduced basis, 17
GiNac,[18

GiNaC: :ex,[18

GiNaC: :exvector,/18
GiNaC::1st,/19
GiNaC::matrix,[18

Girbal, S./103/108

GLPK,[77

GMP,[4

Gomory, R. E/, 26106

h*-vector| 30
H_STAR_VECTOR,[30
h_star_vector,|30

Haase, C[103[104
Hadamard produdt, 14, 96
Hartmann, M.[105
Hartmann, M. E/, 77106
Haws, D.[105

Hemmecke, R, 76,05/ 106
Henrici, P.| 47106

Koppe, M., 38, 35, 37, 47, 481,/57,(72,
80,102, 103105+107

Kannan, R/, 83, 90105, 106

Kapranov, M.[106

Kelly, W.,[31,107

Kienhuis, B.]109

Lagarias, J. Cl, 76, 9307
Lasserre, J. B103[107
LattE, 21,/48]51

LattE macchiato,48,51
latte2polylib.pl,/21
lattice width| 29/76,/83,/83
LATTICE_POINTS,[30
lattice_points,/30
laurent,[27

Lebesgue measure, 57
Lee, C. W.| 46107

left inverse| 43
left_inverse,|17,43
Lenstra, Jr., H. W(107

Lenstra, Lenstra and Lovasz’ basis reduc-

tion algorithm (LLL),8
Lepelley, D.[103[107
lexmin,[1,/26
Lisonék, P.[23
Litvak, A. E.,[104

Hermite Normal Form (HNF), 43, 44, 71,LLL_a,[8

74,75
Hickey, T./ 46/105
Hilbert basis| 76, 80
Huggins, P/, 77105, 106
Hung, M. S.[71106

incremental_specialization, 8
index, 111
inner_point,[33
input format
constraints, 21
vertices| 21
integer hull] 29 77, 80
integer point, 17
integer projection, 90

Joswig, M.} 30106

LLL b,[8

local Euler-Maclaurin formula, 56

Loechner, V.| 4, B, 8, 22, 32, 42, 9002,
103[105/107+110

Louichi, A.,[103 /107

Lovasz, L.[105

lower bound, 2i7

Makhorin, A.] 77/108
Malkin, P.J106

Maslov, V./107

mat_Zz,[12

MaxRays,[8,/15
McDiarmid, C.J105
Meister, B., 14, 45102108
moment curve, 90
monomial substitution, 14
multinomial codficient,[67

114

n, 12

NbBid, 4
NbConstraints,|4

NbEq,

NbRays, 4

neighborhood complek, 16
new_eadd, 11

next, |4

Nikolov, H.,[103/110
NTL,/8,/12

oc,[31

occ,|3]

Omega, 1], 25/ 31

open facef, 33

open ray, 338
optimization oracle, 77

Pajor, A.[104
parallelepiped
fundamentalseefundamental paral-
lelepiped
Param Domain,|18
Param_Polyhedron,/18
parameter compression, 45

Parametric Integer Programming (P(P), 1

parametric polytope, 18, 83
parker, 32

Parker, E., 32108
partition,[9,11]12] 20
period[41

periodic,/5,/8,24-26

periodic numbei41

Pfeifle, J.[72108
piecewise_list,[19
piecewise_lst::add,/19
piecewise_lst::combine,[19,/20
piecewise_lst::evaluate,[19
piecewise_lst::maximize,[19,/32
piecewise_lst::simplify_domains,/19
pip,[77

pip-dual,[77

piplib, 26,77
points2triangs,|72

polar cone, 83

Polyhedron,/4,14][17] 20, 21
Polyhedron_Enumerate,[15
polyhedron_integer_hull,[1,[29
Polyhedron_Polarize,[17
Polyhedron_Project,[17
Polyhedron_Reduced_Basis,[17,26
Polyhedron_Sample, 1726
polyhedron_sample,/1,[26
PolyhedronIncludes,[17
PolyLib, (4,8, 10} 11, 1B, 17, 19, 21, 22,
24126/ 28, 29, 32, 42, 43
version 5.22.0 or newer, 21

polymake,[1],30
polynomial,[5[12
polynomial substitutior, 48
polytope_lattice_width,[1,/29
polytopeminimize,|1,[28
polytope_scan,[1,26
Pommersheim, J48,(48,90,104
Pop, S.103/108
pos,/5,9,/10
power, 13
Preparata, F. P., 7708
primal space, 35

rint_evalue,[1]

rojection theorem, 16
Pugh, W, 55107108
Pulleyblank, W. R[105

QQ,112
quasi-polynomial, 841,141,42
EhrhartseeEhrhart quasi-polynomial

Rabl, T.] 46[103 /108
Rambau, J., 72,08
ranking, 32
rational generating functiod.8
Ray, /4,21
ray
open,seeopen ray
Rays,[21
recession cone, 33
reduce_evalue,[12
reduced basis, 26
generalizedseegeneralized reduced
basis

115

reduction parameter, 8
regular triangulation, 71, 72
relation,[9,/12
representation
explicit, seeexplicit representation
revlex-positive], 44
Rom, W. O.[71106
Rosser, E[107
Rutherford, T.[105

Sakellariou, R], 51, 58,08
Scarf, H. E.[, 16105,/108, 109
Schnorr, C.-P{107

Seghir, R/, 11, 90102, 103109/ 110
Shallcross, D.
Shamos, M. 1], 77108
Shmonin, G/, 83, 88, 90,05
short_rat,[12

Shoup, V.[12109
Shpeisman, T107

Silber, G.-A.,103108

simple cond, 33

size,[5[9

slack variabl€, 710

Smaoui, H.103[107

Smith Normal Form (SNF), 33
SolveDiophantine,[42
Sottile, F.[103/104
specialization, 8

standard form, 70

Stanley, R. P}, 30, 4,09
Stefanov, T/103

stride] 9

Stroobandt, D[102/105
sum) 26

sum,|32

supporting cone, 57
Szarek, S. J104
Tauzer, J[105

Tawbi, N.[51{109
term,/14

Todd polynomial, 48
TOPCOM, 72,75
transverse con7,/60
Turjan, A.[32[109

type, 5

unimodular matrix, 17, 44
unimodular transformation, 71
unimodular_complete,
union/ 11 25

unrestricted sign, 70

upper bound, 27

Value, 4,11/ 15
Van Campenhout, J102/105
Van Engelen, R. Al, 51, 53,09

vars,|19

Vasilache, N[103[108
vecQQ,[12
vec_7Z,/12

vector partition], 72

Verdoolaege, S8, [14,/16,[17[21,
24,(27,/37, 50| 56| 57, 69, 90,
91,/102,103105

Vergne, M.[5657,/57,60,[103 (104

vertex cone, 83

vertices,[21/32

volume]| 46

Walsh, B.]109

Walter, M.[106

width,[76

Wilde, D. K.,/4,/107,[110

within,[32

Wonnacott, D/107

Woods, K. M.] 1642,42,88—90, 93, 97,
102[104,107,/109+111

x.n,/5
X"pl’g‘

Yoshida, R.[105

Zelevinsky, A. V.[106
Zeron, E. S[103[107
zsolve, 76

77,12

116

	Contents
	Internal Representation of the []barvinok library
	Existing Data Structures
	Options
	Data Structures for Quasi-polynomials
	Operations on Quasi-polynomials
	Generating Functions
	Counting Functions
	Auxiliary Functions
	[]bernstein Data Structures and Functions

	Applications included in the barvinok distribution
	barvinok_count
	barvinok_enumerate
	barvinok_enumerate_e
	barvinok_union
	barvinok_ehrhart
	polyhedron_sample
	polytope_scan
	lexmin
	barvinok_summate
	barvinok_bound
	polytope_minimize
	polyhedron_integer_hull
	polytope_lattice_width

	polymake clients
	Omega interface
	Implementation details
	An interior point of a polyhedron
	The integer points in the fundamental parallelepiped of a simple cone
	Barvinok's decomposition of simple cones in primal space
	Triangulation in primal space
	Multivariate quasi-polynomials as lists of polynomials
	Left inverse of an affine embedding
	Integral basis of the orthogonal complement of a linear subspace
	Ensuring a polyhedron has only revlex-positive rays
	Parametric Volume Computation
	Maclaurin series division
	Specialization through exponential substitution
	Approximate Enumeration using Nested Sums
	Exact Enumeration using Nested Sums
	Summation using local Euler-Maclaurin formula
	Reduction to the summation of a parametric polynomial over a parametric polytope with a fixed combinatorial structure
	Summation over a one-dimensional parametric polytope
	Summation over a two-dimensional parametric polytope

	Summation through exponential substitution and Laurent expansions
	Conversion to ``standard form''
	Using TOPCOM to compute Chamber Decompositions
	Computing the Hilbert basis of a cone
	Integer Feasibility
	Computing the integer hull of a polyhedron
	Computing the convex hull based on an optimization oracle
	Optimization over the integer points of a polyhedron

	Computing the integer hull of a truncated cone
	Using the Hilbert basis of the cone
	Using generalized basis reduction

	Computing the lattice width of a parametric polytope
	Testing whether a set has an infinite number of points
	Enumerating integer projections of parametric polytopes

	Publications
	Publications about the Library
	Publications Refering to the Library

	References
	Index

