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Current emerging embedded System-on-Chip platforms are increasingly becoming multiprocessor architectures. System designers
experience significant difficulties in programming these platforms. The applications are typically specified as sequential programs
that do not reveal the available parallelism in an application, thereby hindering the efficient mapping of an application onto a
parallel multiprocessor platform. In this paper, we present our compiler techniques for facilitating the migration from a sequential
application specification to a parallel application specification using the process network model of computation. Our work is in-
spired by a previous research project called Compaan. With our techniques we address optimization issues such as the generation
of process networks with simplified topology and communication without sacrificing the process networks’ performance. More-
over, we describe a technique for compile-time memory requirement estimation which we consider as an important contribution
of this paper. We demonstrate the usefulness of our techniques on several examples.
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1. INTRODUCTION AND MOTIVATION

The complexity of embedded multimedia and signal pro-
cessing applications has reached a point where the perfor-
mance requirements of these applications can no longer be
supported by embedded system platforms based on a single
processor. Therefore, modern embedded System-on-Chip
platforms have to be multiprocessor architectures. In recent
years, a lot of attention has been paid to building such mul-
tiprocessor platforms. Fortunately, advances in chip technol-
ogy facilitate this activity. However, less attention has been
paid to compiler techniques for efficient programming of
multiprocessor platforms, that is, the efficient mapping of
applications onto these platforms is becoming a key issue.
Today, system designers experience significant difficulties in
programming multiprocessor platforms because the way an
application is specified by an application developer does not
match the way multiprocessor platforms operate. The appli-
cations are typically specified as sequential programs using
imperative programming languages such as C/C++ or Mat-
lab. Specifying an application as a sequential program is rela-
tively easy and convenient for application developers, but the
sequential nature of such a specification does not reveal the
available parallelism in an application. This fact makes the
efficient mapping of an application onto a parallel multipro-

cessor platform very difficult. By contrast, if an application
is specified using a parallel model of computation (MoC),
then the mapping can be done in a systematic and transpar-
ent way using a disciplined approach [1]. However, specify-
ing an application using a parallel MoC is difficult, not well
understood by application developers, and a time consuming
and error prone process. That is why application developers
still prefer to specify an application as a sequential program,
which is well understood, even though such a specification is
not suitable for mapping an application onto a parallel mul-
tiprocessor platform.

This gap between a sequential program and a parallel
model of computation motivates us to investigate and de-
velop compiler techniques that facilitate the migration from
a sequential application specification to a parallel applica-
tion specification. These compiler techniques depend on the
parallel model of computation used for parallel application
specification. Although many parallel models of computa-
tion exist [2, 3], in this paper we consider the process net-
work model of computation [4] because its operational se-
mantics are simple, yet general enough to conveniently spec-
ify stream-oriented data processing that fits nicely with the
application domain we are interested in—multimedia and
signal processing applications. Moreover, for this application
domain, many researchers [5–14] have already indicated that
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process networks are very suitable for systematic and efficient
mapping onto multiprocessor platforms.

In this paper, we present our compiler techniques for de-
riving process network specifications for applications speci-
fied as static affine nested loop programs (SANLPs), thereby
bridging the gap mentioned above in a particular way.
SANLPs are important in scientific, matrix computation and
multimedia and adaptive signal processing applications. Our
work is inspired by previous research on Compaan [15–17].
The techniques presented in this paper and implemented in
the pn tool of our isa tool set can be seen as a significant
improvement of the techniques developed in the Compaan
project in the following sense. The Compaan project has
identified the fundamental problems that have to be solved
in order to derive process networks systematically and auto-
matically and has proposed and implemented basic solutions
to these problems. However, many optimization issues that
improve the quality of the derived process networks have not
been fully addressed in Compaan. Our techniques try to ad-
dress optimization issues in four main aspects.

Given an application specified as an SANLP,

(1) derive (if possible) process networks (PN) with fewer
communication channels between different processes
compared to Compaan-derived PNs without sacrificing
the PN performance;

(2) derive (if possible) process networks (PN) with fewer pro-
cesses compared to Compaan-derived PNs without sacri-
ficing the PN performance;

(3) replace (if possible) reordering communication channels
with simple FIFO channels without sacrificing the PN
performance;

(4) determine the size of the communication FIFO channels
at compile time. The problem of deriving efficient FIFO
sizes has not been addressed by Compaan. Our tech-
niques for computing FIFO sizes constitute a starting
point to overcome this problem.

2. RELATED WORK

The work in [11] presents a methodology and techniques
implemented in a tool called ESPAM for automated mul-
tiprocessor system design, programming, and implementa-
tion. The ESPAM design flow starts with three input spec-
ifications at the system level of abstraction, namely a plat-
form specification, a mapping specification, and an applica-
tion specification. ESPAM requires the application specifica-
tion to be a process network. Our compiler techniques pre-
sented in this paper are primarily intended to be used as a
font-end tool for ESPAM. (Kahn) process networks are also
supported by the Ptolemy II framework [3] and the YAPI en-
vironment [5] for concurrent modeling and design of appli-
cations and systems. In many cases, manually specifying an
application as a process network is a very time consuming
and error prone process. Using our techniques as a front-end
to these tools can significantly speedup the modeling effort
when process networks are used and avoid modeling errors
because our techniques guarantee a correct-by-construction
generation of process networks.

Process networks have been used to model applications
and to explore the mapping of these applications onto multi-
processor architectures [6, 9, 12, 14]. The application mod-
eling is performed manually starting from sequential C code
and a significant amount of time (a few weeks) is spent by
the designers on correctly transforming the sequential C code
into process networks. This activity slows down the design
space exploration process. The work presented in this paper
gives a solution for fast automatic derivation of process net-
works from sequential C code that will contribute to faster
design space exploration.

The relation of our analysis to Compaan will be high-
lighted throughout the text. As to memory size requirements,
much research has been devoted to optimal reuse of memory
for arrays. For an overview and a general technique, we refer
to [18]. These techniques are complementary to our research
on FIFO sizes and can be used on the reordering channels
and optionally on the data communication inside a node.
Also related is the concept of reuse distances [19]. In particu-
lar, our FIFO sizes are a special case of the “reuse distance per
statement” of [20]. For more advanced forms of copy propa-
gation, we refer to [21].

The rest of this paper is organized as follows. In Section 3,
we first introduce some concepts that we will need through-
out this paper. We explain how to derive and optimize pro-
cess networks in Section 4 and how to compute FIFO sizes
in Section 5. Detailed examples are given in Section 6, with
a further comparison to Compaan-generated networks in
Section 7. In Section 8, we conclude the paper.

3. PRELIMINARIES

In this section, we introduce the process network model, dis-
cuss static affine nested loop programs (SANLPs) and our in-
ternal representation, and introduce our main analysis tools.

3.1. The process network model

As the name suggests, a process network consists of a set
of processes, also called nodes, that communicate with each
other through channels. Each process has a fixed internal
schedule, but there is no (a priori) global schedule that dic-
tates the relative order of execution of the different processes.
Rather, the relative execution order is solely determined by
the channels through which the processes communicate. In
particular, a process will block if it needs data from a chan-
nel that is not available yet. Similarly, a process will block if it
tries to write to a “full” channel.

In the special case of a Kahn process network (KPN),
the communication channels are unbounded FIFOs that can
only block on a read. In the more general case, data can be
written to a channel in an order that is different from the
order in which the data is read. Such channels are called re-
ordering channels. Furthermore, the FIFO channels have ad-
ditional properties such as their size and the ability to be im-
plemented as a shift register. Since both reads and writes may
block, it is important to ensure the FIFOs are large enough
to avoid deadlocks. Note that determining suitable channel
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sizes may not be possible in general, but it is possible for pro-
cess networks derived from SANLPs as defined in Section 3.2.
Our networks can be used as input for tools that expect Kahn
process networks by ignoring the additional properties of
FIFO channels and by changing the order in which a pro-
cess reads from a reordering channel to match the order of
the writes and storing the data that is not needed yet in an
internal memory block.

3.2. Limitations on the input and
internal representation

The SANLPs are programs or program fragments that can
be represented in the well-known polytope model [22]. That
is, an SANLP consists of a set of statements, each possibly
enclosed in loops and/or guarded by conditions. The loops
need not be perfectly nested. All lower and upper bounds of
the loops as well as all expressions in conditions and array
accesses can contain enclosing loop iterators and parameters
as well as modulo and integer divisions, but no products of
these elements. Such expressions are called quasi-affine. The
parameters are symbolic constants, that is, their values may
not change during the execution of the program fragment.
These restrictions allow a compact representation of the pro-
gram through sets and relations of integer vectors defined by
linear (in)equalities, existential quantification, and the union
operation. More technically, our (parametric) “integer sets”
and “integer relations” are (disjoint) unions of projections of
the integer points in (parametric) polytopes.

In particular, the set of iterator vectors for which a state-
ment is executed is an integer set called the iteration domain.
The linear inequalities of this set correspond to the lower and
upper bounds of the loops enclosing the statement. For ex-
ample, the iteration domain of statement S1 in Figure 1 is
{i | 0 ≤ i ≤ N − 1}. The elements in these sets are ordered
according to the order in which the iterations of the loop nest
are executed, assuming the loops are normalized to have step
+1. This order is called the lexicographical order and will be
denoted by ≺. A vector a ∈ Zn is said to be lexicographi-
cally (strictly) smaller than b ∈ Zn if for the first position i in
which a and b differ, we have ai < bi, or, equivalently,

a ≺ b ≡
n∨

i=1

(
ai < bi ∧

i−1∧

j=1

aj = bj

)
. (1)

The iteration domains will form the basis of the descrip-
tion of the nodes in our process network, as each node will
correspond to a particular statement. The channels are deter-
mined by the array (or scalar) accesses in the corresponding
statements. All accesses that appear on the left-hand side of
an assignment or in an address-of (&) expression are con-
sidered to be write accesses. All other accesses are considered
to be read accesses. Each of these accesses is represented by
an access relation, relating each iteration of the statement to
the array element accessed by the iteration, that is, {(i, a) ∈
I ×A | a = Li + m}, where I is the iteration domain, A is the
array space, and Li + m is the affine access function.

The use of access relations allows us to impose addi-
tional constraints on the iterations where the access occurs.

for (i = 0; i < N; ++i)

S1: b[i] = f(i > 0 ? a[i-1] : a[i], a[i],

i < N-1 ? a[i+1] : a[i]);

for (i = 0; i < N; ++i) {

if (i > 0)

tmp = b[i-1];

else

tmp = b[i];

S2: c[i] = g(b[i], tmp);

}

Figure 1: Use of temporary variables to express border behavior.

This is useful for expressing the effect of the ternary oper-
ator (?:) in C, or, equivalently, the use of temporary scalar
variables. These frequently occur in multimedia applications
where one or more kernels uniformly manipulate a stream
of data such as an image, but behave slightly differently at
the borders. An example of both ways of expressing border
behavior is shown in Figure 1 on a 1D data stream. The sec-
ond read access through b in line 9, after elimination of the
temporary variable tmp, can be represented as

R={(i, a) | a = i− 1∧ 1 ≤ i ≤ N − 1
}∪ {(i, a) | a = i = 0

}
.

(2)

To eliminate such temporary variables, we first identify the
statements that simply copy data to a temporary variable,
perform a dataflow analysis (as explained in Section 4.1) on
those temporary variables in a first pass and combine the
resulting constraints with the access relation from the copy
statement. A straightforward transformation of code such
as that of Figure 1 would introduce extra nodes that sim-
ply copy the data from the appropriate channel to the input
channel of the core node. Not only does this result in a net-
work with more nodes than needed, it also reduces the op-
portunity for reducing internode communication.

3.3. Analysis tools: lexicographical
minimization and counting

Our main analysis tool is parametric integer programming
[23], which computes the lexicographically smallest (or
largest) element of a parametric integer set. The result is a
subdivision of the parameter space with for each cell of this
subdivision a description of the corresponding unique mini-
mal element as an affine combination of the parameters and
possibly some additional existentially quantified variables.
This result can be described as a union of parametric integer
sets, where each set in the union contains a single point, or al-
ternatively as a relation, or indeed a function, between (some
of) the parameters and the corresponding lexicographical
minimum. The existentially quantified variables that may ap-
pear will always be uniquely quantified, that is, the existential
quantifier ∃ is actually a uniqueness quantifier ∃!. Parametric
integer programming (PIP) can be used to project out some
of the variables in a set. We simply compute the lexicograph-
ical minimum of these variables, treating all other variables



4 EURASIP Journal on Embedded Systems

as additional parameters, and then discard the description of
the minimal element.

The barvinok library [24] efficiently computes the
number of integer points in a parametric polytope. We can
use it to compute the number of points in a parametric
set provided that the existentially quantified variables are
uniquely quantified, which can be ensured by first using PIP
if needed. The result of the computation is a compact repre-
sentation of a function from the parameters to the nonnega-
tive integers, the number of elements in the set for the corre-
sponding parameter values. In particular, the result is a piece-
wise quasipolynomial in the parameters. The bernstein li-
brary [25] can be used to compute an upper bound on a
piecewise polynomial over a parametric polytope.

4. DERIVATION OF PROCESS NETWORKS

This section explains the conversion of SANLPs to process
networks. We first derive the channels using a modified
dataflow analysis in Section 4.1 and then we show how to de-
termine channel types in Section 4.2 and discuss some opti-
mizations on self-loop channels in Section 4.3.

4.1. Dataflow analysis

To compute the channels between the nodes, we basically
need to perform array dataflow analysis [26]. That is, for
each execution of a read operation of a given data element
in a statement, we need to find the source of the data, that
is, the corresponding write operation that wrote the data el-
ement. However, to reduce communication between differ-
ent nodes and in contrast to standard dataflow analysis, we
will also consider all previous read operations from the same
statement as possible sources of the data.

The problem to be solved is then: given a read from an
array element, what was the last write to or read (from that
statement) from that array element? The last iteration of a
statement satisfying some constraints can be obtained using
PIP, where we compute the lexicographical maximum of the
write (or read) source operations in terms of the iterators of
the “sink” read operation. Since there may be multiple state-
ments that are potential sources of the data and since we also
need to express that the source operation is executed before
the read (which is not a linear constraint, but rather a dis-
junction of n linear constraints (1), where n is the shared
nesting level), we actually need to perform a number of PIP
invocations. For details, we refer to [26], keeping in mind
that we consider a larger set of possible sources.

For example, the first read access in statement S2 of the
code in Figure 1 reads data written by statement S1, which
results in a channel from node “S1” to node “S2.” In partic-
ular, data flows from iteration iw of statement S1 to iteration
ir = iw of statement S2. This information is captured by the
integer relation

DS1→S2 =
{(
iw, ir

) | ir = iw ∧ 0 ≤ ir ≤ N − 1
}
. (3)

For the second read access in statement S2, as described by
(2), the data has already been read by the same statement

after it was written. This results in a self-loop from S2 to itself
described as

DS2→S2 =
{(
iw, ir

) | iw = ir − 1∧ 1 ≤ ir ≤ N − 1
}

∪ {(
iw, ir

) | iw = ir = 0
}
.

(4)

In general, we obtain pairs of write/read and read oper-
ations such that some data flows from the write/read opera-
tion to the (other) read operation. These pairs correspond to
the channels in our process network. For each of these pairs,
we further obtain a union of integer relations

m⋃

j=1

Dj
(

iw, ir
) ⊂ Zn1 × Zn2 , (5)

with n1 and n2 the number of loops enclosing the write and
read operation respectively, that connect the specific itera-
tions of the write/read and read operations such that the first
is the source of the second. As such, each iteration of a given
read operation is uniquely paired off to some write or read
operation iteration. Finally, channels that result from differ-
ent read accesses from the same statement to data written by
the same write access are combined into a single channel if
this combination does not introduce reordering, a character-
istic explained in the next section.

4.2. Determining channel types

In general, the channels we derived in the previous section
may not be FIFOs. That is, data may be written to the channel
in an order that is different from the order in which data is
read. We therefore need to check whether such reordering
occurs. This check can again be formulated as a (set of) PIP
problem(s). Reordering occurs if and only if there exist two
pairs of write and read iterations, (w1, r1), (w2, r2) ∈ Zn1 ×
Zn2 , such that the order of the write operations is different
from the order of the read operations, that is, w1 � w2 and
r1 ≺ r2, or equivalently

w1 −w2 � 0, r1 ≺ r2. (6)

Given a union of integer relations describing the channel (5),
then for any pair of relations in this union, (Dj1 ,Dj2 ), we
therefore need to solve n2 PIP problems

lexmax
{(

t,
(

w1, r1
)
,
(

w2, r2
)
, p
) |

(
w1, r1

) ∈ Dj1 ∧
(

w2, r2
) ∈ Dj2

∧ t = w1 −w2 ∧ r1 ≺ r2
}

,

(7)

where r1 ≺ r2 should be expanded according to (1) to ob-
tain the n2 problems. If any of these problems has a solution
and if it is lexicographically positive or unbounded (in the
first n1 positions), then reordering occurs. Note that we do
not compute the maximum of t = w1 − w2 in terms of the
parameters p, but rather the maximum over all values of the
parameters. If reordering occurs for any value of the param-
eters, then we simply consider the channel to be reordering.
Equation (7) therefore actually represents a nonparametric
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for (i = 0; i < N; ++i)

a[i] = A(i);

for (j = 0; j < N; ++j)

b[j] = B(j);

for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)

c[i][j] = a[i] * b[j];

Figure 2: Outer product source code.

integer programming problem. The large majority of these
problems will be trivially unsatisfiable.

The reordering test of this section is a variation of the re-
ordering test of [17], where it is formulated as n1 × n2 PIP
problems for a channel described by a single integer rela-
tion. A further difference is that the authors of [17] perform
a more standard dataflow analysis and therefore also need to
consider a second characteristic called multiplicity. Multiplic-
ity occurs when the same data is read more than once from
the same channel. Since we also consider previous reads from
the same node as potential sources in our dataflow analysis,
the channels we derive will never have multiplicity, but rather
will be split into two channels, one corresponding to the first
read and one self-loop channel propagating the value to sub-
sequent reads.

Removing multiplicity not only reduces the communica-
tion between different nodes, it can also remove some arti-
ficial reorderings. A typical example of this situation is the
outer product of two vectors, shown in Figure 2. Figure 3
shows the result of standard dataflow analysis. The left part
of the figure shows the three nodes and two channels; the
right part shows the data flow between the individual iter-
ations of the nodes. The iterations are executed top-down,
left-to-right. The channel between a and c is described by
the relation

Da→c =
{(
ia, ic, jc

) | 0 ≤ ic ≤ N − 1

∧ 0 ≤ jc ≤ N − 1∧ ia = ic
} (8)

and would be classified as nonreordering, since the data ele-
ments are read (albeit multiple times) in the order in which
they are produced. The channel between b and c, on the
other hand, is described by the relation

Db→c =
{(

jb, ic, jc
) | 0 ≤ ic ≤ N − 1

∧ 0 ≤ jc ≤ N − 1∧ jb = jc
} (9)

and would be classified as reordering, with the further com-
plication that the same data element needs to be sent over the
channel multiple times. By simply letting node c only read a
data element from these channels the first time it needs the
data and from a newly introduced self-loop channel all other
times, we obtain the network shown in Figure 4. In this net-
work, all channels, including the new self-loop channels, are
FIFOs. For example, the channel with dependence relation

a c

b

a

b •
•
•
•
•
•

• • • • • •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

Figure 3: Outer product dependence graph with multiplicity.
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Figure 4: Outer product dependence graph without multiplicity.

Db→c (9) is split into a channel with relation

D′b→c =
{(

jb, ic, jc
) | ic = 0∧ 0 ≤ jc ≤ N − 1∧ jb = jc

}

(10)

and a self-loop channel with relation

Dc→c =
{(
i′c, j′c, ic, jc

) | 1 ≤ ic ≤ N − 1

∧ 0 ≤ jc ≤ N − 1

∧ j′c = jc ∧ i′c = ic − 1
}
.

(11)

4.3. Self-loops

When removing multiplicity from channels, our dataflow
analysis introduces extra self-loop channels. Some of these
channels can be further optimized. A simple, but important
case is that where the channels hold at most one data ele-
ment throughout the execution of the program. Such chan-
nels can be replaced by a single register. This situation occurs
when for every pair of write and read iterations (w2, r2), there
is no other read iteration r1 reading from the same channel
in between. In other words, the situation does not occur if
and only if there exist two pairs of write and read iterations,
(w1, r1) and (w2, r2), such that w2 ≺ r1 ≺ r2, or equivalently
r1 − w2 � 0 and r1 ≺ r2. Notice the similarity between this
condition and the reordering condition (6). The PIP prob-
lems that need to be solved to determine this condition are
therefore nearly identical to the problems (7), namely.,

lexmax
{(

t,
(

w1, r1
)
,
(

w2, r2
)
, p
) |

(
w1, r1

) ∈ Dj1 ∧
(

w2, r2
) ∈ Dj2

∧ t = r1 −w2 ∧ r1 ≺ r2
}

,

(12)

where again (Dj1 ,Dj2 ) is a pair of relations in the union de-
scribing the channel and where r1 ≺ r2 should be expanded
according to (1).
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If such a channel has the additional property that the sin-
gle value it contains is always propagated to the next itera-
tion of the node (a condition that can again be checked using
PIP), then we remove the channel completely and attach the
register to the input argument of the function and call the
FIFO(s) that read the value for the first time “sticky FIFOs.”
This is a special case of the optimization applied to in-order
channels with multiplicity of [17] that allows for slightly
more efficient implementations due to the extra property.

Another special case occurs when the number of itera-
tions of the node between a write to the self-loop channel
and the corresponding read is a constant, which we can de-
termine by simply counting the number of intermediate it-
erations (symbolically) and checking whether the result is a
constant function. In this case, we can replace the FIFO by a
shift register, which can be implemented more efficiently in
hardware. Note, however, that there may be a trade-off since
the size of the channel as a shift register (i.e., the constant
function above) may be larger than the size of the channel
as a FIFO. On the other hand, the FIFO size may be more
difficult to determine (see Section 5.2).

5. COMPUTING CHANNEL SIZES

In this section, we explain how we compute the buffer sizes
for the FIFOs in our networks at compile-time. This com-
putation may not be feasible for process networks in gen-
eral, but we are dealing here with the easier case of networks
generated from static affine nested loop programs. We first
consider self-loops, with a special case in Section 5.1, and
the general case in Section 5.2. In Section 5.3, we then ex-
plain how to reduce the general case of FIFOs to self-loops
by scheduling the network.

5.1. Uniform self-dependences on
rectangular domains

An important special case occurs when the channel is repre-
sented by a single integer relation that in turn represents a
uniform dependence over a rectangular domain. A depen-
dence is called uniform if the difference between the read
and write iteration vectors is a (possibly parametric) con-
stant over the whole relation. We call such a dependence a
uniform dependence over a rectangular domain if the set of
iterations reading from the channel form a rectangular do-
main. (Note that due to the dependence being uniform, also
the write iterations will form a rectangular domain in this
case.) For example, the relation Dc→c (11) from Section 4.2
is a uniform dependence over a rectangular domain since
the difference between the read and write iteration vectors
is (ic, jc)− (i′c, j′c) = (1, 0) and since the projection onto the
read iterations is the rectangle 1 ≤ ic ≤ N − 1 ∧ 0 ≤ jc ≤
N − 1.

The required buffer size is easily calculated in these cases
since in each (overlapping) iteration of any of the loops in the
loop nest, the number of data elements produced is exactly
the same as the number of elements consumed. The channel
will therefore never contain more data elements than right

before the first data element is read, or equivalently, right af-
ter the last data element is written. To compute the buffer
size, we therefore simply need to take the first read itera-
tion and count the number of write iterations that are lexico-
graphically smaller than this read iteration using barvinok.
In the example, the first read operation occurs at iteration
(1,0) and so we need to compute

#
(
S∩ {(i′c, j′c

) | i′c < 1
})

+ #
(
S∩ {(i′c, j′c

) | i′c=1∧ j′c < 0
})

,
(13)

with S the set of write iterations

S = {(i′c, j′c
) | 0 ≤ i′c ≤ N − 2∧ 0 ≤ j′c ≤ N − 1

}
. (14)

The result of this computation is N + 0 = N .

5.2. General self-loop FIFOs

An easy approximation can be obtained by computing the
number of array elements in the original program that are
written to the channel. That is, we can intersect the domain
of write iterations with the access relation and project onto
the array space. The resulting (union of) sets can be enumer-
ated symbolically using barvinok. The result may however
be a large overestimate of the actual buffer size requirements.

The actual amount of data in a channel at any given iter-
ation can be computed fairly easily. We simply compute the
number of read iterations that are executed before a given
read operation and subtract the resulting expression from
the number of write iterations that are executed before the
given read operation. This computation can again be per-
formed entirely symbolically and the result is a piecewise
(quasi-)polynomial in the read iterators and the parameters.
The required buffer size is the maximum of this expression
over all read iterations.

For sufficiently regular problems, we can compute the
above maximum symbolically by performing some simpli-
fications and identifying some special cases. In the general
case, we can apply Bernstein expansion [25] to obtain a para-
metric upper bound on the expression. For nonparametric
problems, however, it is usually easier to simulate the com-
munication channel. That is, we use CLooG [27] to gener-
ate code that increments a counter for each iteration writ-
ing to the channel and decrements the counter for each read
iteration. The maximum value attained by this counter is
recorded and reflects the channel size.

5.3. Nonself-loop FIFOs

Computing the sizes of self-loop channels is relatively easy
because the order of execution within a node of the network
is fixed. However, the relative order of iterations from differ-
ent nodes is not known a priori since this order is determined
at run-time. Computing minimal deadlock-free buffer sizes
is a nontrivial global optimization problem. This problem
becomes easier if we first compute a deadlock-free schedule
and then compute the buffer sizes for each channel individu-
ally. Note that this schedule is only computed for the purpose
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for (j=0; j < Nrw; j++)

for (i=0; i < Ncl; i++)

a[j][i] = ReadImage();

for (j=1; j < Nrw-1; j++)

for (i=1; i < Ncl-1; i++)

Sbl[j][i] = Sobel(a[j-1][i-1], a[j][i-1], a[j+1][i-1],

a[j-1][ i], a[j][ i], a[j+1][ i],

a[j-1][i+1], a[j][i+1], a[j+1][i+1]);

Figure 5: Source code of a Sobel edge detection example.

of computing the buffer sizes and is discarded afterward. The
schedule we compute may not be optimal and the resulting
buffer sizes may not be valid for the optimal schedule. Our
computations do ensure, however, that a valid schedule ex-
ists for the computed buffer sizes.

The schedule is computed using a greedy approach. This
approach may not work for process networks in general, but
it does work for any network derived from an SANLP. The
basic idea is to place all iteration domains in a common it-
eration space at an offset that is computed by the schedul-
ing algorithm. As in the individual iteration spaces, the ex-
ecution order in this common iteration space is the lexico-
graphical order. By fixing the offsets of the iteration domain
in the common space, we have therefore fixed the relative
order between any pair of iterations from any pair of iter-
ation domains. The algorithm starts by computing for any
pair of connected nodes, the minimal dependence distance
vector, a distance vector being the difference between a read
operation and the corresponding write operation. Then the
nodes are greedily combined, ensuring that all minimal dis-
tance vectors are (lexicographically) positive. The end result
is a schedule that ensures that every data element is written
before it is read. For more information on this algorithm,
we refer to [28], where it is applied to perform loop fu-
sion on SANLPs. Note that unlike the case of loop fusion,
we can ignore antidependences here, unless we want to use
the declared size of an array as an estimate for the buffer
size of the corresponding channels. (Antidependences are
ordering constraints between reads and subsequent writes
that ensure an array element is not overwritten before it is
read.)

After the scheduling, we may consider all channels to be
self-loops of the common iteration space and we can apply
the techniques from the previous sections with the follow-
ing qualifications. We will not be able to compute the abso-
lute minimum buffer sizes, but at best the minimum buffer
sizes for the computed schedule. We cannot use the declared
size of an array as an estimate for the channel size, unless we
have taken into account antidependences. An estimate that
remains valid is the number of write iterations.

We have tacitly assumed above that all iteration domains
have the same dimension. If this is not the case, then we first
need to assign a dimension of the common (bigger) itera-

tion space to each of the dimensions of the iteration domains
of lower dimension. For example, the single iterator of the
first loop of the program in Figure 2 would correspond to the
outer loop of the 2D common iteration space, whereas the
single iterator of the second loop would correspond to the
inner loop, as shown in Figure 3. We currently use a greedy
heuristic to match these dimensions, starting from domains
with higher dimensions and matching dimensions that are
related through one or more dependence relations. During
this matching we also, again greedily, take care of any scal-
ing that may need to be performed to align the iteration do-
mains. Although our heuristics seem to perform relatively
well on our examples, it is clear that we need a more gen-
eral approach such as the linear transformation algorithm of
[29].

6. WORKED-OUT EXAMPLES

In this section, we show the results of applying our op-
timization techniques to two image processing algorithms.
The generated process networks (PN) enjoy a reduction in
the amount of data transferred between nodes and reduced
memory requirements, resulting in a better performance,
that is, a reduced execution time. The first algorithm is the
Sobel operator, which estimates the gradient of a 2D im-
age. This algorithm is used for edge detection in the pre-
processing stage of computer vision systems. The second al-
gorithm is a forward discrete wavelet transform (DWT). The
wavelet transform is a function for multiscale analysis and
has been used for compact signal and image representations
in denoising, compression, and feature detection processing
problems for about twenty years.

6.1. Sobel edge detection

The Sobel edge detection algorithm is described by the source
code in Figure 5. To estimate the gradient of an image, the al-
gorithm performs a convolution between the image and a 3×
3 convolution mask. The mask is slid over the image, manip-
ulating a square of 9 pixels at a time, that is, each time 9 image
pixels are read and 1 value is produced. The value represents
the approximated gradient in the center of the processed im-
age area. Applying the regular dataflow analysis on this ex-
ample using Compaan results in the process network (PN)
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ReadImage

1 2 3 255 256 257 509 510 511

Sobel

Figure 6: Compaan generated process network for the Sobel exam-
ple.

depicted in Figure 6. It contains 2 nodes (representing the
ReadImage and Sobel functions) and 9 channels (repre-
senting the arguments of the Sobel function). Each channel
is marked with a number showing the buffer size it requires.
These numbers were obtained by running a simulation pro-
cessing an image of 256 × 256 pixels (Nrw=Ncl=256). The
ReadImage node reads the input image from memory pixel
by pixel and sends it to the Sobel node through the 9 chan-
nels. Since the 9 pixel values are read in parallel, the execu-
tions of the Sobel node can start after reading 2 lines and 3
pixels from memory.

After detecting self reuse through read accesses from the
same statement as described in Section 4.1, we obtain the PN
in Figure 7. Again, the numbers next to each channel specify
the buffer sizes of the channels. We calculated them at com-
pile time using the techniques described in Section 5. The
number of channels between the nodes is reduced from 9 to
3 while several self-loops are introduced. Reducing the com-
munication load between nodes is an important issue since
it influences the overall performance of the final implemen-
tation. Each data element transferred between two nodes in-
troduces a communication overhead which depends on the
architecture of the system executing the PN. For example, if
a PN is mapped onto a multiprocessor system with a shared
bus architecture, then the 9 pixel values are transferred se-
quentially through the shared bus, even though in the PN
model they are specified as 9 (parallel) channels (Figure 6).
In this example it is clear that the PN in Figure 7 will only
suffer a third of the communication overhead because it con-
tains 3 times fewer channels between the nodes. The self-
loops are implemented using the local processor memory
and they do not use the communication resources of the sys-
tem. Moreover, most of the self-loops require only 1 regis-
ter which makes their implementations simpler than the im-
plementation of a communication channel (FIFO). This also
holds for PNs implemented as dedicated hardware. A single-
register self-loop is much cheaper to implement in terms of
HW resources than a FIFO channel. Another important issue
(in both SW and HW systems) is the memory requirement.
For the PN in Figure 6 the total amount of memory required
is 2304 locations, while the PN in Figure 7 requires only 1033
(for a 256× 256 image). This shows that the detection of self
reuse reduces the memory requirements by a factor of more
than 2.

In principle, the three remaining channels between the
two nodes could be combined into a single channel, but, due

ReadImage

7 Ncl−2 Ncl−2

1 1 1 1 1 1 1 1 1 1 Ncl−4 1 1 Ncl−4 1 1Sobel

Figure 7: The generated process network for the Sobel example us-
ing the self reuse technique.

to boundary conditions, the order in which data would be
read from this channel is different from the order in which
it is written and we would therefore have a reordering chan-
nel (see Section 4.2). Since the implementation of a reorder-
ing channel is much more expensive than that of a FIFO
channel, we do not want to introduce such reordering. The
reason we still have 9 channels (7 of which are combined
into a single channel) after reuse detection is that each ac-
cess reads at least some data for the first time. We can change
this behavior by extending the loops with a few iterations,
while still only reading the same data as in the original pro-
gram. All data will then be read for the first time by access
a[j+1][i+1] only, resulting in a single FIFO between the
two nodes. To ensure that we only read the required data,
some of the extra iterations of the accesses do not read any
data. We can (manually) effectuate this change in C by using
(implicit) temporary variables and, depending on the index
expressions, reading from “noise,” as shown in Figure 8. By
using the simple copy propagation technique of Section 3.2,
these modifications do not increase the number of nodes in
the PN.

The generated optimized PN shown in Figure 9 con-
tains only one (FIFO) channel between the ReadImage and
Sobel nodes. All other communications are through self-
loops. Thus, the communication between the nodes is re-
duced 9 times compared to the initial PN (Figure 6). The to-
tal memory requirements for a 256 × 256 image have been
reduced by a factor of almost 4.5 to 519 locations. Note that
the results of the extra iterations of the Sobel node, which
partly operate on “noise,” are discarded and so the final be-
havior of the algorithm remains unaltered. However, with the
reduced number of communication channels and overhead,
the final (real) implementation of the optimized PN will have
a better performance.

6.2. Discrete wavelet transform

In the discrete wavelet transform (DWT) the input image is
decomposed into different decomposition levels. These de-
composition levels contain a number of subbands, which
consist of coefficients that describe the horizontal and ver-
tical spatial frequency characteristics of the original image.
The DWT requires the signal to be extended periodically.
This periodic symmetric extension is used to ensure that
for the filtering operations that take place at both bound-
aries of the signal, one signal sample exists and spatially
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#define A(j,i) (j>=0 && i>=0 && i<Ncl ? a[j][i] : noise)

#define S(j,i) (j>=1 && i>=1 && i<Ncl-1 ? Sbl[j][i] : noise)

for (j=0; j < Nrw; j++)

for (i=0; i < Ncl; i++)

a[j][i] = ReadImage();

for (j=-1; j < Nrw-1; j++)

for (i=-1; i < Ncl+1; i++)

S(j,i) = Sobel(A(j-1, i-1), A(j, i-1), A(j+1, i-1),

A(j-1, i), A(j, i), A(j+1, i),

A(j-1, i+1), A(j, i+1), A(j+1, i+1));

Figure 8: Modified source code of the Sobel edge detection example.

ReadImage

1

Sobel 1 1 1 1 1 1 Ncl Ncl

Figure 9: The generated PN for the modified Sobel edge detection
example.

corresponds to each coefficient of the filter mask. The
number of additional samples required at the boundaries of
the signal is therefore filter-length dependent.

The C program realizing one level of a 2D forward DWT
is presented in Figure 10. In this example, we use a lifting
scheme of a reversible transformation with 5/3 filter [30]. In
this case the image has to be extended with one pixel at the
boundaries. All the boundary conditions are described by the
conditions in code lines 8, 11, 17, 20, 26, and 29.

First, a 1D DWT is applied in the vertical direction (lines
7 to 13). Two intermediate variables are produced (low- and
high-pass filtered images subsampled by 2—lines 9 and 12).
They are further processed by a 1D DWT applied in the hori-
zontal direction and thus producing (again subsampled by 2)
a four subbands decomposition: HL (line 18), LL (line 21),
HH (line 27), and LH (line 30). The process network gen-
erated by using the regular dataflow analysis (and Compaan
tool) is depicted in Figure 11. The PN contains 23 nodes, half
of them just copying pixels at the boundaries of the image.
Channel sizes are estimated by running a simulation again
processing an image 256 × 256 pixels. Although most of the
channels have size 1, they cannot be implemented by a simple
register since they connect nodes and additional logic (FIFO
like) is required for synchronization. Obviously, the gener-
ated PN has considerable initial overhead.

The optimization goals for this example are to remove
the Copy nodes and to reduce the communication between
the nodes as much as possible. We achieve these goals by
applying our techniques. The optimized process network is
shown in Figure 12. The simple copy propagation technique
reduces the number of the nodes from 23 to 11 and the de-
tection of self reuse technique reduces the communication
between the nodes from 40 to 15 channels introducing 8
self-loop channels. There is only one channel connecting two
nodes of the PN in Figure 12, except for the channels between
the ReadImage and high filt vert nodes. In this case, we
detect that a combined channel would be reordering. As we
mentioned in the previous example, we prefer not to intro-
duce reordering and therefore generate more (FIFO) chan-
nels. As a result, the number of channels emanating from the
ReadImage has been reduced by only one compared to the
initial PN (Figure 11). The buffer sizes are calculated at com-
pile time using our techniques described in Section 5 and the
correctness of the process network is tested using the YAPI
environment [5]. Note that in this example applying the opti-
mization techniques has little effect on the memory require-
ments: the number of memory locations required for an im-
age of 256×256 pixels is 2585 compared to 2603 for the initial
DWT PN. However, the topology of the optimized PN has
been simplified significantly allowing an efficient HW and/or
SW implementation.

7. COMPARISON TO COMPAAN AND
COMPAAN-LIKE NETWORKS

Table 1 compares the number of channels in Compaan-
like networks to the number of channels in our networks.
The Compaan-like networks were generated by using stan-
dard dataflow analysis instead of also considering reads as
sources and by turning off the copy propagation of tempo-
rary scalars and the combination of channels reading from
the same write access. The table shows a decomposition of
the channels into different types. In-Order (IO) and Out-
of-Order (OO) refer to FIFOs and reordering channels, re-
spectively, and the M-suffix refers to multiplicity, which does
not occur in our networks. Each column is further split into



10 EURASIP Journal on Embedded Systems

Table 1: Comparison to channel numbers of Compaan-like networks.

Algorithm name

Compaan-like networks Our networks

IO IOM OO OOM IO OO

sl + ed sl + ed sl + ed sl + ed 1r + sl + ed sl + ed

LU-Factor 3 + 13 1 + 7 0 + 3 0 + 1 2 + 5 + 16 0 + 3

QR-Decomp 4 + 8 0 + 0 0 + 0 0 + 0 1 + 3 + 8 0 + 0

SVD 4 + 41 0 + 4 0 + 18 0 + 0 8 + 0 + 34 0 + 16

Faddeev 3 + 20 0 + 3 0 + 1 0 + 0 4 + 2 + 19 0 + 1

Gauss-Elim. 2 + 5 0 + 0 0 + 1 1 + 2 0 + 6 + 6 0 + 1

Motion Est. 27 + 66 0 + 0 0 + 0 0 + 0 0 + 54 + 66 0 + 0

M-JPEG 9 + 21 0 + 17 0 + 0 0 + 0 18 + 0 + 38 0 + 0

for (i = 0; i < 2*Nrw; i++)

for (j = 0; j < 2*Ncl; j++)

a[i][j] = ReadImage();

5 for (i = 0; i < Nrw; i++) {

// 1D DWT in vertical direction with subsampling

for (j = 0; j < 2*Ncl; j++) {

tmpLine = (i==Nrw-1) ? a[2*i][j] : a[2*i+2][j];

Hf[j] = high_flt_vert(a[2*i][j], a[2*i+1][j], tmpLine);

10

tmp = (i==0) ? Hf[j] : oldHf[j];

low_flt_vert(tmp, a[2*i][j], Hf[j], &oldHf[j], &Lf[j]);

}

15 // 1D DWT in horizontal direction with subsampling ---------

for (j = 0; j < Ncl; j++) {

tmp = (j==Ncl-1) ? Lf[2*j] : Lf[2*j+2];

HL[i][j] = high_flt_hor(Lf[2*j], Lf[2*j+1], tmp);

20 tmp = (j==0) ? HL[i][j] : HL[i][j-1];

LL[i][j] = low_flt_hor(tmp, Lf[2*j], HL[i][j]);

}

// 1D DWT in horizontal direction with subsampling ---------

25 for (j = 0; j < Ncl; j++) {

tmp = (j==Ncl-1) ? Hf[2*j] : Hf[2*j+2];

HH[i][j] = high_flt_hor(Hf[2*j], Hf[2*j+1], tmp);

tmp = (j == 0) ? HH[i][j] : HH[i][j-1];

30 LH[i][j] = low_flt_hor(tmp, Hf[2*j], HH[i][j]);

}

}

// The Outputs ------------------------------------------------

for (i = 0; i < Nrw; i++)

35 for (j = 0; j < Ncl; j++) {

Sink(LL[i][j]);

Sink(HL[i][j]);

Sink(LH[i][j]);

Sink(HH[i][j]);

40 }

Figure 10: Source code of a discrete wavelet transform example.
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ReadImage

high flt vert

image: 1

copy

image: 512

image: 512image: 513

tmpLine: 1 tmpLine: 1
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Hf: 1 copy copy Hf: 2

tmp: 1 tmp: 1

Hf: 2

Hf: 1
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HH: 1 HH: 1 HH: 1

tmp: 1 tmp: 2
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Lf: 1 tmp: 512 oldHf: 1 Lf: 1
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HL: 1 Sink copy copy

tmp: 1 tmp: 2
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LL: 1
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Figure 11: 2D-DWT process network with copy nodes.

self-loops+edges, or single-register+self-loops+edges for our
FIFOs.

Note that our numbers on Compaan-like networks dif-
fer from those on Compaan networks reported in [17]. Due
to a difference in internal representation, some of our chan-
nels are split into several Compaan-channels. In Compaan,
these channels are recombined, with possibly further combi-
nations, at a later stage. From the table, we can conclude that
our techniques have split all OOM channels in examples LU-
Factor and Gauss-Elim. into pairs of FIFOs. In general, we
also have fewer channels between different nodes at the ex-
pense of more self-loops, which are a lot more efficient. For
example, for SVD, the number of edges is reduced from 63
to 50, while for LU-Factor we have a reduction from 24 to 19
and for Faddeev from 24 to 20. Finally, we are able to identify
(in examples LU-Factor, QR-Decomp, SVD, Faddeev, and M-
JPEG) that many of these self-loops are “single-register” FI-
FOs, where “register” should be interpreted as “token,” which
may be a whole table in the case of M-JPEG.

As to the time needed to derive the networks, Compaan
itself takes 2.3 to 28.1 seconds on the examples in Table 1,

while our tool takes 2.5 to 46.4 seconds. Most of the latter
time is spent in the computation of the FIFO sizes, which
Compaan does not compute.

8. CONCLUSIONS AND DISCUSSION

In this paper, we have improved upon the state-of-the-art
conversion of sequential programs to process networks in
several ways. We have shown that we can reduce the number
of reordering channels as well as the total number of channels
between different nodes by extending the standard dataflow
analysis to detect reuse within a node. This effect is enhanced
by first removing the (artificial) copy nodes introduced by
Compaan through simple copy propagation. Our modified
dataflow analysis leads to a removal of all reordering chan-
nels with multiplicity that appear in our examples and a re-
duction of the communication volume by up to a factor 9 in
the extreme case. We have further shown how to compute the
FIFO sizes exactly for self-loops in nonparametric programs
and approximately for other channels and self-loops in para-
metric programs.
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ReadImage

high flt vert

image: 2∗Ncl image: 2∗Ncl image: 1
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Figure 12: Optimized 2D-DWT process network.
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