Main Page | Class List | File List | Class Members | File Members

compress_parms.h

Go to the documentation of this file.
00001 /**
00002  * @author B. Meister 12/2003-2006
00003  * LSIIT -ICPS 
00004  * UMR 7005 CNRS
00005  * Louis Pasteur University (ULP), Strasbourg, France
00006  */
00007 #ifndef __BM_COMPRESS_PARMS_H__
00008 #define __BM_COMPRESS_PARMS_H__
00009 
00010 #include "matrix_addon.h"
00011 #include "matrix_permutations.h"
00012 #include <assert.h>
00013 
00014 
00015 /* ----- functions applying on equalities ----- */
00016 
00017 /** 
00018  * Given a system of non-redundant equalities, looks if it has an integer
00019  * solution in the combined space, and if yes, returns one solution.
00020  */
00021 void Equalities_integerSolution(Matrix * Eqs, Matrix ** sol);
00022 
00023 /** 
00024  * Computes the validity lattice of a set of equalities. I.e., the lattice
00025  * induced on the last <tt>b</tt> variables by the equalities involving the
00026  * first <tt>a</tt> integer existential variables.
00027  */
00028 void Equalities_validityLattice(Matrix * Eqs, int a, Matrix** vl);
00029 
00030 /** 
00031  * Given an integer matrix B with m rows and integer m-vectors C and d,
00032  * computes the basis of the integer solutions to (BN+C) mod d = 0 (1).
00033  * This is an affine lattice (G): (N 1)^T= G(N' 1)^T, forall N' in Z^b.
00034  * If there is no solution, returns NULL.
00035 */
00036 void Equalities_intModBasis(Matrix * B, Matrix * C, Matrix * d, Matrix ** imb);
00037 
00038 
00039 /* ----- functions applying on constraints ----- */
00040 
00041 
00042 /**
00043  * Eliminates all the equalities in a set of constraints and returns the set of
00044  * constraints defining a full-dimensional polyhedron, such that there is a
00045  * bijection between integer points of the original polyhedron and these of the
00046  * resulting (projected) polyhedron).
00047  */
00048 void Constraints_fullDimensionize(Matrix ** M, Matrix ** C, Matrix ** VL, 
00049                                   Matrix ** Eqs, Matrix ** ParmEqs, 
00050                                   unsigned int ** elimVars, 
00051                                   unsigned int ** elimParms,
00052                                   int maxRays);
00053 
00054 /* extracts equalities involving only parameters */
00055 #define Constraints_removeParmEqs(a,b,c,d) Constraints_Remove_parm_eqs(a,b,c,d)
00056 Matrix * Constraints_Remove_parm_eqs(Matrix ** M, Matrix ** Ctxt, 
00057                                      int renderSpace, 
00058                                      unsigned int ** elimParms);
00059 
00060 /**
00061  * Eliminates the columns corresponding to a list of eliminated parameters.
00062  */
00063 void Constraints_removeElimCols(Matrix * M, unsigned int nbVars, 
00064                                 unsigned int *elimParms, Matrix ** newM);
00065 
00066 
00067 /* ----- function applying on a lattice ----- */
00068 
00069 /**
00070  * Given a matrix that defines a full-dimensional affine lattice, returns the 
00071  * affine sub-lattice spanned in the k first dimensions.
00072  * Useful for instance when you only look for the parameters' validity lattice.
00073  */
00074 void Lattice_extractSubLattice(Matrix * lat, unsigned int k, Matrix ** subLat);
00075 
00076 
00077 /* ----- functions applying on a polyhedron ----- */
00078 
00079 
00080 Polyhedron * Polyhedron_Remove_parm_eqs(Polyhedron ** P, Polyhedron ** C, 
00081                                       int renderSpace, 
00082                                       unsigned int ** elimParms, 
00083                                       int maxRays);
00084 #define Polyhedron_removeParmEqs(a,b,c,d,e) Polyhedron_Remove_parm_eqs(a,b,c,d,e)
00085 
00086 
00087 /* ----- functions kept for backwards compatibility ----- */
00088 
00089 
00090 /** 
00091  * given a full-row-rank nxm matrix M(made of row-vectors), 
00092  * computes the basis K (made of n-m column-vectors) of the integer kernel of M
00093  * so we have: M.K = 0
00094 */
00095 Matrix * int_ker(Matrix * M);
00096 
00097 /* given a matrix of m parameterized equations, compress the parameters and
00098  transform the variable space into a n-m space. */
00099 Matrix * full_dimensionize(Matrix const * M, int nb_parms, 
00100                            Matrix ** Validity_Lattice);
00101 
00102 /* Compute the overall period of the variables I for (MI) mod |d|,
00103  where M is a matrix and |d| a vector
00104  Produce a diagonal matrix S = (s_k) where s_k is the overall period of i_k */
00105 Matrix * affine_periods(Matrix * M, Matrix * d);
00106 
00107 /* given a matrix B' with m rows and m-vectors C' and d, computes the 
00108  basis of the integer solutions to (B'N+C') mod d = 0.
00109 returns NULL if there is no integer solution */
00110 Matrix * int_mod_basis(Matrix * Bp, Matrix * Cp, Matrix * d);
00111 
00112 /* given a parameterized constraints matrix with m equalities, computes the
00113  compression matrix C such that there is an integer solution in the variables
00114  space for each value of N', with N = Cmp N' (N are the original parameters) */
00115 Matrix * compress_parms(Matrix * E, int nb_parms);
00116 
00117 
00118 #endif /* __BM_COMPRESS_PARMS_H__ */

Generated on Thu Sep 4 15:28:57 2008 for polylib by doxygen 1.3.5